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Abstract – In this paper,we studied the phenomenon of wave motion in a homogeneously isotropic, 
thermoelastic solid plate framed with ideal fluid layers on its both sides with varying temperatures. In the 
light of the classical theory of thermo-elasticity, all the work is carried out and for Lamb-type thermoelastic 
wavespropagating in the plate,the secular equations are gobbled up for symmetric and skew-symmetric 
wave style. The different cases of secular equations are also discussed in the framework of the uncoupled 
thermo-elasticity.The dispersion equations for three different regions are also deduced.  It is found that 
the SH mode remains unaffected by thermal variations and keeps itself isolated from the rest of the 
coupled motion of elastic waves (longitudinal and SV modes) and thermal waves (T-mode).Onewave in 
each liquid layer also exists due to the presence of ideal fluid loadings. The numerical resultsfor an 
aluminum-epoxy materialcladded with water are carried out. A wide range of scopes of this research 
area is available in various fields such as ultrasonics, earthquake engineering, soil dynamics, 
seismology, etc. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

1. INTRODUCTION 

The elastic waves are used to measure defects and 
elastic properties in solid materials haveestablished 
great attention, and various important applications 
have been developed recently. Inthe non-destructive 
evaluation of hard materials, the coupling of elastic 
waves with liquid-loaded materials has appeared as 
animportant field. The acoustic waves thatare 
replicated from the solid-liquid interface have a lot of 
information regarding the solid structure properties 
together with the presence of the internal defect, 
interface quality etc. In deformable-body temperature 
varies from point to point and with time. This 
temperature variation is due to the deformation 
process and exchange of heat with the external 
medium in which mechanical energy is changed into 
heat energy. The degradation in thermo-elastic 
energy results in the damping of elastic body 
vibrations. Firstly,Lamb [1] developed the theory of 
waves known as Lamb waves.The Lamb waves are 
created on the belief that when the solid plate is 
cladded with the liquid it varies the amplitude and 
propagation velocity of the Lamb waves in the free 
boundaries due to viscous and inertial effects of the 
fluid in the plate. Theconsequence of thefluid on the 
Lamb wavespropagation in a plate of fixed-
widthsandwiched between homogeneous liquidhalf-
space on its both sides investigated by Schoch[2]and 
found that some amount ofenergyin the plate is 

attached with the fluid in the form of radiation, 
while the most of energy leftovers in the solid. 
Forplane thermoelastic and magnetothermoelastic 
waves, an exact solution of the secular equation is 
derived by Puri [3] and obtained the solutions 
using approximate expansions for low and high 
frequencies and small coupling. Plona et. al. 
[4]investigated Lamb and Rayleigh waves at solid-
liquid boundaries and derived that the simple 
Lamb or Rayleigh mode approach gives 
unexpected results when the solid and liquid 
densities are nearly equal. The influence of fluid 
layers on Lamb wavespropagation in asolidplate is 
discussed by Wu and Zhu[6]and obtained the 
frequency equation for the same. 

Exposedto isothermal and insulated 
conditions,thethermally conducting elastic waves 
for a rigidly fixed and stress-free homogeneous 
and an isotropicmaterial in the light of non-
classical theories of thermo-elasticity are studied 
by Sharma et.al. [7]. Thetime-harmonic Lamb 
waves propagation in the thermo-elasticmaterial 
fringed with non-viscousfluid loading on the 
bottom and top of the plate is investigated by 
Sharma and Pathania [8]. Sharma and Pathania 
[9]studied the motion of Rayleigh and Lamb 
waves in thermally conducting elastic plate 
cladded with homogeneousfluid coatingsor half-
spaceson its both borders in the framework of the 
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non-classical theory of thermo-elasticity. They 
showed that the shear horizontal component of 
waves decouples from the primary stream of wave 
motion and evaluated the frequency equations for 
non-leaky Lamb waves, leaky Rayleigh waves and 
leaky Lamb waves.Propagation of wave in a liquid 
saturated porous solid with micro-polar elastic 
skelton at the boundary surface has been evaluated 
by [10, 11]. Pathania et. al. [12] investigated the 
thermoelastic waves in anisotropic plates immersed 
in viscous liquid layers innon-classical theories of 
thermo-elasticity. Kumar et.al. [13] discussed the 
circular crested and straight wave motion in micro-
stretch thermoelastic plate surroundedbynon-
viscousfluid coatingson both sides with varying 
temperatures. Pathania et. al. [14] also studied the 
characteristics of the circular waves in a 
homogeneous and transversely isotropicthermo-
elastic materialsurroundedby conducting viscous fluid 
loading layers (or halfspaces) on the top and bottom 
of the plate. Recently, Barak et al. [15] evaluated the 
reflection and refraction of wave in two welded 
contact infinite unbounded half-spaces and the effect 
of the loosely bounded interface on wave 
propagation between two half-space has been 
obtained by Barak and Kaliraman [16]. 

Here we analyze the motion of Lamb waves in 
athermally conducting elastic homogeneousand 
isotropic plate in the presence of an ideal fluid layer 
on its both sides at varying temperatures. The 
governing equations are solved in the x-z plane and 
it is found that there exist three coupled waves in the 
solid plate and one wave in each liquid layer. For 
Lamb waves, the frequency equation issolved 
analyticallyforthe classical theory of thermo-elasticity 
and further deduced for uncoupled thermoelasticity. 
The equations for various regions have been 
deduced from the secular equation depending upon 
the type of characteristic roots. The aluminum-epoxy 
composite materialis selected for the solid plate and 
water is taken as a fluid to carry out the numerical 
results. The mathematical and graphical results are 
closely related to each other. 

2. FORMULATION OF THE PROBLEM 

We consider a thermally conducting elastic 
homogeneous and isotropic solidmaterialhavingthe 

thickness . Initially, the solid plate is at an 

undisturbed state and unvarying temperature . 
The solid plate is cladded with a homogeneous ideal 

fluid of thickness  on both borders i.e.on top and 
the bottom. It is supposed that from the interlayers of 
the liquid medium no reflection takes place. The 

origin of the cartesian coordinate system is 
taken at any point in the center of the plate. The 

wave propagates along the - direction andthe field 
extentsremain 

 

Figure-1: Geometry of the Problem 

explicitly independent of -coordinate which implies

 but depend implicitly on -coordinate 
such that the shear component of displacement is 
non-zero. The z-axis points to a vertically 
downwards direction alongthe plate thicknessas 
illustrated in Figure-1. 

The constitutive relationsand fundamental 
equations in the light of the classical theory of 
thermo-elasticity for the plate in the non-
attendance ofbody forces andheat sources[8] are, 

 

The governing equations and temperature relation 
in the non-attendance of heat sources and body 
forcesforthe fluid medium [13],are given by 

 

Where 

 

Here the dot over a symbol represents the time 
derivative and the comma in the subscript denotes 

the spatial derivative. are Lame‘s 

parameters, is the density of solid material,

is the displacement vector, 
denotes the specific heat at a constant strain of 

the solid material, is temperature 
changeandKis the coefficient of thermal 

conductivity.Also where is the linear 
thermal expansion. In the same manner, for the 

liquid, is denoting the displacement 

vector in fluid, is the density and is the bulk 
modulus of liquid respectively. Fromthe ambient 

temperature  is the deviation in temperature 

of the fluid and is the thermal conductivity in 
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fluid layers. Also where is the coefficient 

of volume thermal expansion. The subscript 
represents that liquid takes the value 1 and 2 for the 

bottom and top fluid layers. Here and is the 
Nabla and Laplacian operator respectively. 

Consider the dimensionless quantities as 

 

Making use of quantities (5), the 
dimensionlessfundamental equations of motion and 
energyequation in the solid plate and liquid layers, 
after suppressing primes, are 

 

where 

 

Here is the characteristic frequency of the 

material plate and  denotes the specific heat of 

the fluid at constant volume.Inthe solid plate
denote the longitudinal and shear wave velocities 

and denotes the velocity of sound in the liquid,. 

Also  are the thermomechanical coupling 
constants in the material plate and fluid layers 
respectively. 

To solve the above equations, we consider 

 

where represents the potential functions for 
the longitudinal and shear waves. In the inviscid fluid 
layers,the shear motion does not exist, thusin the 
absence of shear motioninthe fluid we get 

 

where  is the scalar velocity potential for the 

bottom and top fluid layers  

Plugging equations (11) and (12) in equations (6)-(9), 

we obtain the potential functions 

temperatures and  as 

 

3. SOLUTION OF THE PROBLEM 

Since the waves are propagating along the x-axis 
in the positive direction ofthe thermo-elastic plate, 
we take the solutions as 

 

Here , and  represent the 
dimensionless phase velocity, wavenumber 
andangular frequency of plane waves. 

Invoking the solutions (18) in equations (13)-(17), 

the expressions for and  are 
attained as 
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Puri [3] firstly obtained the expressions for . 
Theacoustical pressure vanishes at external 

boundaries to ensure a bounded 
solution due to the chosen potential functions 

. Here  and  are the solutions of 
the standing wave and they are solutions of traveling 
waves in leaky Lamb waves case. 

4. BOUNDARY CONDITIONS 

The stress traction, displacement and heat flux at the 

solid-fluid interfaces may be written as: 

(i)  For  the solid plate, the dimensionless 
normal element of the stress tensor must be 
equal to the pressure of the fluid, i.e. 

 

(ii) The dimensionless shearelement of the 
stress tensor must be zero, i.e. 

 

(iii) The dimensionless normal displacement 
elementof the plate must be equal to 
thefluid, i.e. 

 

(iv) The boundary condition for thermal case is 
specified by 

 

where H is the coefficient of heat transfer. 

5. DERIVATION OF SECULAR 
EQUATION 

Plugging therequired interface conditions (24)-(27) at

 , we obtain anarrangement of eight 
homogeneous linear equations with eight unknown 
amplitudes. For the existence ofa non-zero solution 
of the system of equations, the determinant of the 
coefficient matrix of these parameters is zero. 
Theprocedure used by Sharma and Pathania [8] 
aftersome arithmetical calculations of the determining 

factortogether with conditions  and 

the dispersion 
relation for Lamb type waves with varying 
temperature yields 

 

where . 
The skew-symmetric mode corresponds to by 
superscripted + sign and symmetric mode 
corresponds to superscripted – sign. 

If , i.e. in the nonappearance of fluid 
layers, equation (28) becomes 

 

which represents the secular equation in a stress-
free thermally conducting elastic solid for uniform 
temperature. 

For a thermally insulated  stress-free solid, the 
secular equation (29) can be obtained by setting

, thuswe have 

 

and for an isothermal stress-free plate , 
thus we get 

 

The frequency equations (30) and (31) represent 
the thermally insulated and isothermal cases for a 
stress-free thermoelastic plate and matches 
exactly withalready obtained results of Sharma et 
al. [7] and Sharma and Pathania [8]. 

6. DIFFERENT REGIONS OF THE 
SECULAR EQUATION 
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The equations (22) can be written as 

 

Here depending on whether 

 or 

we may have 

 to be imaginary, zero, or real. Thus the 
dispersion equation (28) is transformed as follows. 

RegionI:For 

and accordingly, we get 

. Therefore, equation (28) 
becomes 

 

Region II: For  and the 
secular equation (28) yields 

 

 

Region III: For the dispersion 
equation remains the same as given by equation 
(28). 

7. UNCOUPLED THERMOELASTICITY 

For uncoupled thermo-elasticity

thus . 
Therefore, the dispersion equations (28) yields 

 

In the absence of varying temperature equation (35) 
reduces to 

 

If i.e. for a thermally insulated  plate, the 
equation (36) reduces to 

 

If i.e. for a isothermal plate, the equation 
(36) becomes 

 

If i.e. in the non-appearance of liquid,  
equations (37) and (38) respectively reduces to 

 

The equations (39) and (40) are the same as 
obtained by Sharma and Pathania [8], Sharma et. 
al. [7] and in elastokinetics for stress-free 
boundary conditions conferred in detail by Graff 
[5]. 

8. SOLUTION OF THE SECULAR 
EQUATION 

The complex transcendental secular equations 
(28) contain a plethora of information like wave 
number, phase velocity, attenuation coefficient, 
etc. To solve these secular equations, we take 

 

Here and  represent phase velocity and 
attenuation coefficientof plane waves respectively. 

Also ,  and are real numbers 
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and .  The exponential in the time-
harmonic plane wave solution (18) turns out to be 

.The various modes of propagating 
waveforthe attenuation coefficientQ and phase 

velocity can be obtained by substitutingequation 
(41) in dispersion equation (28). Thevalues of the 

attenuation coefficient and phase velocity are 
computed by using relation (41). 

9. NUMERICAL RESULTS AND 
DISCUSSION 

In this section, we present some numerical results for 
the aluminum-epoxy composite material with the 
opinion of demonstrating the theoretical results 
obtained in the previous sections.  The numerical 
values for the material are given as [8,11]: 

 

For numerical calculations, the fluid taken is water. 

The density of the fluid is and 
the sound velocity in the fluid is 

. 

Table 1: The values of specific heat of water at 
different temperatures 

 

Figure 2 and Figure 3 represent the profiles of phase 

velocity  with respect to the wavenumber of 
symmetric and asymmetric modes of wave 
propagation with ideal (inviscid) liquid loading 
respectively.  Itis noticed from Figure 2 that for the 

bottommost symmetric mode the phase 
velocity declines approximately from unity at a long 
wavelength and with the increasing wave number it 
moves towards the thermoelastic Rayleigh wave 
velocity. For other symmetrical modes 

, the phase 
velocityaccomplishesmoderately high values at 
vanishing wavenumber and at short wavelength, it 
decreases asymptotically and becomes closer to 
shear wave velocity. 

In the case of Figure 3, the value of phase velocity of 
the lowermostskew-symmetric mode rises from zero 
at starting wavenumber and thenremains almost 
constant and approaches to thermoelastic surface 

wave velocity with the increase in wavenumbers. In 
higher modes, thepropagating phase velocities have 
high values at starting wavenumber thatsharply 
decreases and attains steady and asymptotic 
Rayleigh wave velocity with advanced wavenumber. 
For skew-symmetric optical modes the profiles of 
phase velocity with respect to wavenumber follow 

 

the samemovements as that observed in the case 
of symmetric one. In both cases, for higher modes 
the value of phase velocity is found to progress at 
anamountnearly n-times the phase velocity 
magnitude of the initial mode. 

 

Figure 4 indicates the profiles of phase velocities 
with respect to liquid loaded temperature 
changeand it is noticed thatthe propagating phase 
velocity of non-viscousfluid almost remains 
constant with fluid loaded temperature change in 
both symmetric and asymmetric modes except 
variation in values of the phase velocity and 
magnitude of symmetrical mode is higher than the 
magnitude of asymmetric mode. It is also found 
that the symmetric and asymmetric modes of 
phase velocity profile have non-dispersive nature 
with respect to the liquid loaded temperatures i.e. 
there is no effect of different temperature loading. 

Figure 5 indicates the variations of attenuation 
coefficients with respect to the liquid loaded 
temperatureof wave propagation for symmetrical 
and skew-symmetrical modes. Here we noticed 
that the attenuation coefficient profile with respect 
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to fluid loaded temperature follows the 
samemovement except for variations in the 
magnitude of the attenuation coefficient. In this case, 
the asymmetric mode has a significantly high 
magnitude than the symmetric one. 

In both Figures 4 and 5, it is observed that liquid 
loading temperature has the opposite effect in 
symmetric as well as the asymmetric mode in case of 
phase velocity and attenuation coefficient. 

 

 

10. CONCLUSIONS 

The Lamb waves propagation in a thermally 
conducting elastic homogeneous isotropic plate in 
the presence of non-viscousfluid layers on its both 
sides, with varying temperature is studied in the 
frame of reference of coupled thermo-elasticityand 
following conclusions are obtained. 

1. There exists a coupled system of three types 
of waves viz. longitudinal waves, the vertical 
component of transverse waves and waves 
due to thermal variation in the solid plate. 

2. It is found that apart from this coupled 
system of waves, there is a horizontal 
component of transverse wavesthat keeps 
itself isolated from the rest of the coupled 
motion and is not affectedby the mechanical 
and thermal load. 

3. Apart from the waves in a solid plate, two 
mechanical waves in each liquid layer are 
also exists due to mechanical stresses. 

4. With the variation in the parameter 
wavenumber , we find three different regions 
of secular equations. 

5. For asymmetric mode, the plots of the 
attenuation coefficient with varied liquid 
temperatures show a decreasingtrend. Thus, 
it is inferred that the skew-symmetric mode is 
more sensitive and quite useful in ultrasonic 
applications. 

6. The present analysis is very much useful in 
the field of earthquake engineering, soil 
dynamics, seismology, hydrology and 
geophysics. 
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