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Abstract - This study explores various numerical methods for solving partial differential equations (PDEs), 
which are crucial in modeling complex phenomena across diverse scientific and engineering fields. 
Given the challenges associated with obtaining analytical solutions for PDEs, numerical approaches 
such as the Finite Difference Method (FDM), Finite Element Method (FEM), and Finite Volume Method 
(FVM) have become essential. This research provides a comparative analysis of these techniques, 
evaluating them based on accuracy, computational efficiency, and applicability to different types of 
PDEs, including elliptic, parabolic, and hyperbolic equations. Through a series of test cases, the study 
highlights the strengths and weaknesses of each method, offering practical insights into their use for 
solving PDEs in real-world scenarios. 
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INTRODUCTION 

Partial Differential Equations (PDEs) are fundamental 

to the mathematical modeling of a wide range of 

physical processes, including heat conduction, fluid 

dynamics, and electromagnetic fields. Unlike ordinary 

differential equations, PDEs involve multiple 

independent variables, making their solutions more 

complex and challenging. Analytical solutions to 

PDEs are often difficult or impossible to obtain, 

particularly for non-linear problems or those with 

complex boundary conditions. Consequently, 

numerical methods have become indispensable for 

approximating solutions to PDEs. 

The primary numerical techniques for solving PDEs 

include the Finite Difference Method (FDM), the 

Finite Element Method (FEM), and the Finite Volume 

Method (FVM). Each method has its unique 

approach to discretizing the problem domain and 

handling boundary conditions, which influences their 

suitability for different types of PDEs. For instance, 

FDM is known for its simplicity and ease of 

implementation, particularly for problems on regular 

grids. In contrast, FEM is highly flexible in handling 

complex geometries and boundary conditions, 

making it widely used in engineering applications. 

This study aims to provide a comprehensive analysis 

of these numerical methods, assessing their 

performance in solving different types of PDEs. By 

examining the accuracy, computational cost, and 

practical applicability of each technique, the 

research seeks to guide the selection of the most 

appropriate method for solving PDEs in various 

scientific and engineering contexts. 

METHODS 

First example (one dimensional heat equation):  

Using the given parameters, find the 
solution to the boundary value issue  

 

Solution: 

We are aware of the fact that the optimal answer to 
the one-dimensional heat equation 

is given by  
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From equation (2) 

 

Now using condition (ii) in equation (3) 

 

From (3) 

 

Most general solution of given equation is 

 

We get the result when we plug in condition (iii) into 
equation (5). 

 

 

Now putting these value in equation (5) 

 

 

BENDER-SCHMIDT METHOD 

Consider one dimensional heat equation, namely, 

 

where 

 is an example of parabolic equation. If 

, the equation 

becomes, 

 

With boundary conditions, 

, and with initial 
condition 

 

Think of a rectangular grid in the x-t plane with h 
vertices and k tangents. Denoting a mesh point 

 we have 
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substituting these in (a), we obtain 

 

An explicit formula is what we get with equation (b). 
The condition for its validity is an  

  

The coefficient of disappears, leading to 

the transformation of equation (b) into  

  

 

DU FORT AND FRANKEL METHOD 

In (a), if we substitute the central difference 
approximations for the derivative, 

 

And 

 

We obtain 

 

where The three-tiered approach 
that uses this difference equation is known as the 
Richardson scheme. 

If we replace by the mean of the variables 

and  i.e.  

 

On simplification, it can be written as 

 

This technique of calculating differences is known 
as the Du Fort-Frankel scheme: 

 

 

BENDER-SCHMIDT METHOD 

The initial condition is 
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One dimensional heat flow equation is 

 

Where 

 

 

CRANK-NICHOLSON DIFFERENCE METHOD 

The initial condition is 

 

One dimensional heat flow equation 
is

 for any t 

 

DU FORT AND FRANKEL METHOD 

An equation for one-dimensional heat flow serves as 

the starting point 
is 

 for any t. 

 

ERROR ANALYSIS 

 

CONCLUSION 

This study has provided a detailed comparative 

analysis of numerical methods for solving partial 

differential equations. The choice of numerical 

method should be based on the specific 

characteristics of the PDE being solved, including 

the type of equation, the domain geometry, and the 

desired accuracy. The findings of this study provide 

valuable insights for researchers and practitioners, 

aiding in the selection of the most appropriate 

numerical technique for solving PDEs in various 

fields of science and engineering. By improving the 

understanding of these methods, the study 

contributes to more accurate and efficient 

numerical solutions of PDEs, thereby advancing 

the modeling of complex physical phenomena. 
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