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Abstract - In many branches of science and engineering, nonlinear fractional partial differential equations 

(FPDEs) have shown to be effective instruments for simulating complicated processes. The intrinsic 

complexity of these equations and the nonlocal nature of fractional derivatives pose challenges to 

traditional techniques of solving them. In order to overcome these difficulties, this paper presents a 

brand-new analytical method that offers a practical and quick way to solve nonlinear FPDEs. The 

suggested approach combines [briefly outline the fundamental techniques, such as the Adomian 

decomposition and Laplace transform] to get precise results with little computing overhead. The 

technique's effectiveness and adaptability are shown by a number of examples, which also highlight its 

potential for broad use in fields including biological systems, fluid dynamics, and financial modelling. 
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INTRODUCTION 

Fractional partial differential equations (FPDEs) have 
gained significant attention in recent years due to their 
ability to model various complex systems with memory 
and hereditary properties. Unlike integer-order 
differential equations, FPDEs incorporate fractional 
derivatives, which introduce nonlocality and can better 
describe phenomena in fields such as viscoelasticity, 
anomalous diffusion, and quantum mechanics. 
However, the complexity of these equations, 
particularly in their nonlinear forms, poses substantial 
challenges to traditional solution methods. 

Several numerical and analytical approaches have 
been proposed to solve FPDEs, yet they often suffer 
from limitations such as high computational cost, 
instability, or restricted applicability. This paper 
presents a new analytical technique that combines 
[describe key methods or principles, e.g., the Laplace 
transform, series expansion, etc.] to effectively solve 
nonlinear FPDEs. The objective is to offer a reliable 
and efficient tool that can be applied across a wide 
range of disciplines, with a focus on demonstrating the 
practical utility of the method through a series of case 
studies. 

NEW ANALYTICAL TECHNIQUE FOR SOLVING 
NON LINEAR FRACTIO AL PARTIAL 
DIFFERENTIAL EQUATIONS 

In this paper, A NAT is shwo that can solve the 
following nonlinear first-order FPDEs: 

1.2.1 

Where  and  perform their duties as 

linear and nonlinear operator on withall 

partialderivatives, including fractional ones, and any 

others that could be involved, and  

recognized as analytical operations,  where q is 

the magnitude of the caputo linear partial derivative 

with time and  

Through analytical piecewise solutions, the NAT can 

handle noonlinear first order partial differential 

equations (FPDEs). Before the ANT may be 

implemented, these outcomes must be 

demonstrated (Kormaz, E. 2013) 
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Theorem 1.2.1 Let we define 

where the parameter  is an 

integer between zero and one. Afterwards, the unit 

operator  fulfilss the condition listed below: 

 ………………1.2.2 

Theorem 1.2.2: Let  we define 

where the parameter  is an 

integer zero and one. Afterwards, the operator on 

nonlinear  fulfills the condition listed below 

 ……1.2.3 

Proof. Applying the Maclaurin expansion allows one to 

 in reference to  we have 

 

 

Defination 2.2.1: The function  

is constrained to 

……….1.2.4 

Remark 2.1. Let 

be defined in 

1.2.1 next, in section 1.2.2 we apply the theory to get  

the nonlineast operator is synonymous with 

En when stated as: (Belic, M. 2016) 

 ………………….1.2.5 

The analytical solution to the nonlinear partial 

differential equation (NAT) is given by the following 

theorem and is used to provide Equation (1.2.1) for the 

nonlinear fractional parametric differential. 

Theorem 2.2.3: Let  

the analytical functions that are used consequently, a 

solution can be found for the equation (1.2.1) by 

……1.2.6  

Where  

serve as a symbol for the 1-order temporal fractional 

partial integral in

 
respectively proof. The analytic expansion that follow 

is predicated on the function  being a solution 

to equation (1.2.1) 

………….1.2.7 

With these considerations in mind, we can find a 

solution to the nonlineat fractional partial differential 

equation (1.2.1) 

 
1.2.8 

Under the starting condition provided by (Hammad, 

D.2012) 

…….1.2.9 

Since this is a nonlinear fractional partial differential 

equation, we may use the answer to solve (2.2.8) 

………………..1.2.10 

We derive it by applying theorem 1.2.1 to both sides 

of the starting value issue (2.2.8) and taking the 

Riemann-Liouville time fractioanl partial integral of 

order q. 
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………….1.2.11 

The starting condition is supplied by (2.2.1) which 

allows us to rewrite equation (2.2.11) as: 

……..1.2.12 

Additionally we get that we want by changing (1.2.10) 

into (1.2.12) 

……1.2.13 

Equation (12.13) is transformed by using Theorems 

1.2.1 and 1.2.2 

…….1.2.14 

Equation (1.2.14) is then solved using definition 1.2.1 

and remark 1.1 

……1.2.15 

The commponents in equation (1.2.15) may be 

expressed as identical powers of which allows us 

Derive (Erdelyi, 1965) 

……..1.2.16 

We than get the solution of the second equation, which 

is (1.2.8) by plugging (1.2.16) into the first equation 

(1.2.10) We may now derive from equations (1.2.7) 

and (1.2.10) 

.1.2.17 

By applying the starting conditions and looking at 

(1.2.17) we may observe that  

…..1.2.18 

Which implies that  using equation (1.2.16) 

into equation (1.2.17) the proof is completed. The 

analytical solution to the nonlinear fractional partial 

differential equation (1.2.1) is provided by (1.2.6) and 

we prove its convergence and maximum absolute 

error in the following theorems (Singh, M.2011) 

A convergene theorem is tarted in theorem 1.2.4. A 

Banach space is denoted by B. Afterwards, if there is 

an exist, the solution series of equation (1.2.16) will 

converge to  such that

 

Proof. The following partial sums are used to define 

the sequence Sn: 

……1.2.19 

{Sn} must be proven to be a Cauchy sequence in the 

Banach space B. Towards this end, we take into 

account 

…….1.2.20 

For every equation (1.2.20) and the 

triangle inequality were applied in a sequential 

manner resulting in 

…………….1.2.21 

 

…………1.2.22 
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……………………………..1.2.23 

Hence in a Banach space B,{Sn} is a Cauchy 

sequence and the series solution with respect to 

equation (1.2.17) converged. The evidence is now 

complete. (He,J.H.1999) 

Theorem 2.2.5: for nonlinear FPDEs (1.2.1) the 

greatest absolute truncation error for the solution 

series (1.2.7) is approximated to be 

….1.2.24 

Where the region  

Proof Therorem 1.2.4 stated that 

…………1.2.25 

But we assume that  and since  

we obtain next we can rewrite the equation 

(1.2.25) as 

………1.2.26 

That being said the most extreme case of a mistake is 

………………1.2.27 

And with that the proof is finished. 

1.2.2 Discuttion and numerical results 

Table 1.1 provides that numerical value of the solution 

to example 1.2.11 for a number x and t value for 

q=0.5, 0.75 and 1 when q ranges from 0.5 to 1.75 we 

may compare the solution numerical values for various 

x and t value to example 1.2.1.2 in table 1.2 for q=0.50 

and q=0.75, the approximate solution to Example 

1.2.1.1 is shown in Figure I.I, plotted against a number 

of x-t values. Figure 1.2 shows the graphs of the 

approximate and exact solutions for Exam-pie 1.2.1.1 

for various values of x and t when q =I. (Tajadodi, H. 

2010) 

Table 1.1: umerical values of the precise and 

approximate solutions for Example 12.1.1 

for q = 0.5,0.75, 1 among various choices ofx,t 

 

Table 1.2:Numerical values of the approximate 

and precise solution among several variables 

ofx,t for Example 2.2.1.2 with q = 0.5,0.75,1 and 

a= 2. 

 

 

 
(a) The graph of the approximate solution u(x,t) 
for Example 2.2.1.1 for various values of x,t when q 
= 0.50. 
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(b) The graph of the approximate solution u(x,t) 
for Example 2.2.1.1 for various values of x,t when q = 
0.75. 

Figure 1.1:The graphs show thee approximate 
solution u(x,t) for Example 22.1.1 for various 

values of x,t for q = 0.50 and q = 0.75. 

 

(a) The graph of the approximate solution u(x,t) 
for Example 2.2.1.1 for various values of x,t when q = l 
.(Daftardar-Gejji, V. 2006) 

 

(b) The graph for Example 2.2.1.l's precise 
answer, uEX (x,t), among various x,t values. 

Figure 1.2:The graphs show Example 12.1.1's 

approximate and exact answers for various values 

of x,t when q = 1. 

 

 

CONCLUSION 

Enhancing the modelling capabilities of these potent 
mathematical instruments requires the creation of new 
analytical methods for solving nonlinear fractional 
partial differential equations. This study presents a 
strategy that overcomes many of the drawbacks of 
conventional procedures, offering a strong and 
effective approach. This approach provides a 
considerable increase in accuracy and processing 
efficiency by merging [reiterate core techniques]. The 
method's successful application to a number of cases 
demonstrates how widely applicable it might be in 
scientific and engineering applications. In order to 
further improve the analytical toolkit accessible to 
academics working in this field, future study will 
investigate additional expansions of this approach and 
its application to more complicated and high-
dimensional FPDEs. 
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