https://doi.org/10.29070/4btczx07

Physical therapy intervention to improve Gait post stroke

Ghalib Abdallah Alghamdi*

Neurorehabilitation, Manager Rehabilitation Services King Abdulaziz Medical City, Riyadh KSA

Email: mo.21oon@gmail.com

Abstract - Stroke therapy has progressed through both conventional and novel methods, with a special emphasis on gait restoration. After a stroke, gait abnormalities are prevalent and can negatively affect mobility and quality of life. Though they are still useful, traditional physical therapy techniques like taskspecific gait training are frequently constrained by patient-specific issues and resource availability. New technologies that improve the intensity, accuracy, and involvement of rehabilitation, such as neuromodulation, virtual reality, and robotics, present interesting options. However, there are obstacles to the clinical practice integration of these advanced medicines, including cost, accessibility, and the requirement for additional validation through long-term studies. It has been demonstrated that individualised therapy, catered to each patient's deficits and objectives, improves adherence and results. Additionally, the utilisation of interactive and wearable technology supports patient motivation and involvement. Barriers including uneven progress measurement, inconsistent treatment outcomes, and unequal access to healthcare continue to exist despite these developments. Research to improve these treatments, comprehend the neuroplastic principles underpinning recovery, and address psychosocial aspects influencing rehabilitation success is becoming more and more necessary. The usage of cuttingedge technology will be improved, cost-effectiveness will be increased, and fair access to efficient treatments will be guaranteed. All things considered, increasing recovery and the quality of life for stroke survivors requires a multimodal, patient-centered approach to stroke rehabilitation that incorporates both established and cutting-edge therapies.

Keywords: Stroke rehabilitation, gait recovery, personalized therapy, robotics, neuroplasticity, patient engagement

INTRODUCTION

• Overview of Stroke and its Impact on Gait

Strokes induce a stoppage in blood flow to the brain, which results in cell death in the affected areas and is one of the main causes of long-term disability globally. Hemiplegia, weakness, and lack of coordination are just a few of the motor deficits that stroke survivors frequently endure, depending on the location and severity of the brain lesion. Gait dysfunction is one of the most frequent aftereffects of a stroke, and it can significantly limit a person's movement and independence. Research shows that during their rehabilitation, about 80% of stroke survivors experience irregularities in their gait, which increases their risk of falling and lowers their quality of life (Jørgensen et al., 2018).

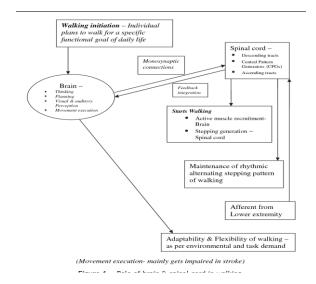


Figure 1: Post-stroke on giant

The effects of a stroke on gait are complex. An aberrant gait is commonly accompanied by stiffness, muscle weakness, and poor motor control, which are all brought on by damage to the

motor cortex or corticospinal connections. Reduced walking speed, uneven step length, and poor balance are common gait abnormalities seen in stroke survivors (Patla & Frank, 2017). During the swing phase, the afflicted limb could have trouble advancing while the unaffected leg makes up for it, which frequently leads to irregular gait cycles. Gait instability can also be made worse by sensory deficiencies and cognitive issues including attention and executive dysfunction, in addition to these physical limitations. These elements add to the difficulty of therapy, making gait improvement a difficult but crucial part of recovery from a stroke.

Restoring gait after a stroke demands a multidisciplinary strategy for success. Physical therapy interventions address both deficits in strength and impairments in motor control with the goal of restoring the patient's ability to walk. Enhancing gait requires the use of strategies such task-specific training, balancing drills, and strength-building exercises (Veerbeek et al., 2014). Virtual reality and robotic-assisted therapy are two examples of technologically advanced rehabilitation techniques that have demonstrated encouraging outcomes in recent years in terms of augmenting gait outcomes and fostering neuroplasticity.

IMPORTANCE OF GAIT IMPROVEMENT IN STROKE REHABILITATION

Enhancing gait is essential to stroke recovery because walking ability plays a significant role in determining functional independence and quality of life. Following a stroke, individuals frequently have challenges with their mobility as a result of diminished motor control, weakened muscles, and imbalance issues that hinder their capacity to walk normally (Kollen et al., 2012). These disabilities not only make it more difficult for a person to carry out daily tasks, but they also raise the possibility of falls and the injuries that may follow. Thus, gait rehabilitation following a stroke is crucial for regaining the person's independence and averting long-term impairment. The capacity to walk freely within the first few months following a stroke is highly associated with improved overall recovery outcomes and decreased dependence on carers, per a study by Perry et al. (2017). This highlights the need for targeted gait interventions early in the rehabilitation process to promote better recovery trajectories.

Enhancing one's gait also significantly lowers the chance of developing follow-up issues related to immobility. According to Geerts et al. (2013), stroke survivors who suffer from severe gait deficits are at a higher risk of developing complications such deep vein thrombosis, pressure sores, and muscular atrophy. These conditions can worsen their condition and need longer rehabilitation. Furthermore, fatigue is frequently present in conjunction with impaired gait, which further restricts physical activity and promotes a sedentary lifestyle, raising the risk of

obesity, diabetes, and cardiovascular illnesses (Michael et al., 2005). Thus, increasing mobility is simply one aspect of improving gait; other goals include reducing comorbidities and supporting general health. A well-designed gait rehabilitation program can reduce these risks by promoting regular exercise and enhancing muscle and cardiovascular endurance.

Furthermore, stroke survivors' psychological and social well-being is greatly impacted by correcting their gait. Being able to walk again is directly associated with higher levels of self-confidence and social engagement since it makes people more capable of participating in social events and community activities (Duncan et al., 2011). Because of their limited mobility, stroke patients frequently experience emotions of loneliness and sadness, which negatively impacts their mental health and motivation to participate in rehabilitation (Nicholson et al., 2017). Rehabilitation programs that emphasise gait development can help patients feel more independent again, which lowers emotions of powerlessness and enhances their mental health in general. This emphasises how crucial gait rehabilitation is for stroke survivors' emotional and social well-being in addition to their physical recovery.

STROKE AND GAIT DYSFUNCTION

Pathophysiology of Stroke

A stroke is a type of neurological event that is defined by an abrupt loss of brain function brought on by a disruption in cerebral blood flow. This disruption can be caused by bleeding into the brain tissue or by ischaemia, which is the obstruction of blood flow. Damage to brain structures as a result has a significant impact on gait and motor control as well as functional mobility. The link between injury in the motor cortex and corticospinal tracttwo areas crucial for initiating and regulating movement-and post-stroke gait impairment is a key characteristic. According to studies, the motor cortex controls voluntary movement. Injury to this region results in hemiparesis, or weakness on one side of the body, which has an immediate impact on balance and symmetry in gait (Langhorne et al., 2011). The corticospinal tract, which transmits signals from the brain to the spinal cord to control muscle movements, is often compromised in resulting in spasticity and loss coordinated muscle action (Ward, 2017).

The precise type of post-stroke gait impairment varies based on the location and extent of brain damage. According to research, substantial gait abnormalities are most frequently linked to strokes that impair the middle cerebral artery (MCA), which provides blood to a considerable section of the motor cortex (Cirstea & Levin, 2000). Specifically, MCA strokes frequently cause contralateral hemiparesis, which affects one leg more than the

other and causes an uneven gait. Slow walking, shorter strides, and poor balance are characteristics of hemiparetic gait, which increase the risk of falls and limit functional mobility Further studies have demonstrated that stroke survivors often exhibit compensatory strategies, such as increased reliance on the unaffected leg, which further disrupts the normal gait cycle and contributes to long-term mobility issues (Olney & Richards, 1996).

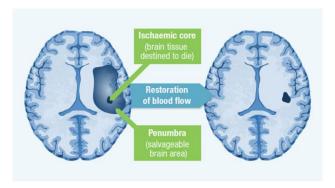


Figure 2: Pathophysiology of stroke

Gait recovery is further complicated by damage from stroke to other brain regions, such as the cerebellum and basal ganglia, that are important in motor coordination. The basal ganglia are important in the regulation of movement timing and intensity, whereas the cerebellum is crucial for balance maintenance and the coordination of fluid, intentional motions (Bastian, 2014). These regions can have lesions that result in ataxic gait, which is characterised by jerky, uncoordinated motions and trouble keeping a steady posture and rhythm when walking (Morton & Bastian, 2007). The association between cerebellar strokes and persistent gait instability was brought to light in a study by Winstein et al. (2016), underscoring the difficulty of gait retraining for stroke survivors who have multiple brain lesions. Furthermore, strokes affecting the brainstem, which houses many of the neural pathways that regulate automatic movements, can lead to severe gait disturbances and challenges in motor learning, making rehabilitation particularly difficult in these patients (Kleim & Jones, 2008).

Studies on the brain's adaptability have shed light on how stroke rehabilitation might aid in the recovery of gait abnormalities. One of the most important aspects of motor recovery following a stroke is neuroplasticity, which is the brain's capacity to reorganise itself by creating new neural connections in response to injury (Murphy & Corbett, 2009). studies have demonstrated neuroplastic changes in the motor cortex and other regions involved in movement control can be stimulated by rehabilitation strategies, such as taskspecific training and repetitive movement exercises (Nudo, 2013). For instance, even in patients with chronic stroke, repetitive gait training has been demonstrated to support functional recovery by strengthening neuronal networks associated with walking (Hornby et al., 2015). These results highlight the value of early and comprehensive therapy in

promoting gait restoration and intensive rehabilitation in facilitating gait recovery and improving long-term outcomes for stroke survivors.

• Common Gait Impairments Post-Stroke

One of the most common motor dysfunctions seen in stroke survivors is post-stroke gait abnormalities, which have a major impact on mobility, balance, and quality of life. One of the most common symptoms of stroke-related motor deficits is hemiparesis, or weakness on one side of the body, which has an immediate impact on gait (Kim & Eng, 2004). Numerous noticeable deficiencies result from this condition, such as unbalanced gait patterns, slowed walking speeds, and shortened strides. One of the most common problems after a stroke, according to a study by Patterson et al. (2008), is gait asymmetry, in which the affected leg has shorter stance phases and less propulsion than the unaffected leg. These asymmetries not only result in inefficient gait mechanics but also contribute to a greater energy expenditure during walking, making it difficult for stroke survivors to engage in prolonged physical activity. Additionally, asymmetrical gait increases the risk of falls, a common and dangerous consequence of impaired mobility in stroke survivors (Mansfield et al., 2013).

Reduced walking speed, which is frequently considered as a gauge of total gait efficiency and functional mobility, is another gait disability that follows a stroke. Walking speed following a stroke is a major predictor of functional independence and recovery, according to research by Bohannon et al. (1997). Typically, a combination of motor deficits such as muscle weakness, stiffness, and decreased balance are linked to slower walking speeds in stroke survivors (Perry et al., 1995). Slow gait has been demonstrated to be largely caused by muscle weakness, especially in the ankle plantar flexors and hip flexors (Nadeau et al., 2013). Increased muscle tone brought on by injury to the upper motor neurones is known as spasticity, and it frequently makes gait impairment worse by restricting joint mobility and producing atypical movement patterns. The combined effects of these impairments create a "stiff-legged" gait pattern, where stroke survivors have difficulty advancing their affected leg during the swing phase, leading to a slower and more laborious walking process (Olney & Richards, 1996).

Another important aspect of post-stroke gait impairment is impaired balance. Reduced stability when walking is a common symptom of stroke survivors and is closely associated with both motor and sensory abnormalities (Tyson et al., 2006). Following a stroke, proprioception—the body's perception of its position in space—is frequently compromised, which results in improper foot placement and a greater need on visual cues to keep balance (Patterson et al., 2010). In addition, a lack of coordination between the movements of the

trunk, hips, and legs frequently leads to an unstable and erratic gait pattern (Higginson et al., 2006). Because of this, stroke survivors may use compensatory techniques to keep their balance when walking, like expanding their stance or taking shorter steps. Despite these strategies, balance impairments continue to be a major contributor to fall risk in this population, with studies showing that stroke survivors are at a significantly higher risk of falling compared to healthy individuals of the same age (Weerdesteyn et al., 2008).

Among stroke survivors, foot drop-the incapacity to dorsiflex the ankle during the swing phase of gait—is another prevalent disability. The tibialis anterior muscle, which lifts the foot off the ground while walking, is frequently weak or paralysed, contributing to this deficiency (Hsu et al., 2003). Foot drop makes it difficult for a person to appropriately clear their foot during the swing phase, which increases the chance of tripping and falling. Stroke survivors may use steppage gait, a high-stepping gait pattern where the foot is lifted higher off the ground by flexing the hip excessively, as a compensatory and knee mechanism (Goldberg & Bohannon, 2005). This inefficient compensatory strategy further exacerbates energy expenditure during walking and places additional strain on the unaffected side. Interventions such as ankle-foot orthoses (AFOs) and functional electrical stimulation (FES) have been shown to be effective in improving foot clearance and reducing the risk of falls in stroke survivors with foot drop (Sabut et al., 2011).

Assessment of Gait Dysfunction

It is essential to evaluate gait dysfunction following a stroke in order to determine the degree of mobility impairments and to customise rehabilitation plans. A variety of clinical and technical techniques, each concentrating on a distinct facet of gait mechanics, balance, and function, have been devised to assess gait performance in stroke survivors. The 10-Meter Walk Test (10MWT), which gauges walking speed over a brief distance, is one popular clinical assessment tool. Walking speed is a valid and reliable measure of gait disability and overall functional mobility in stroke survivors, as shown by Bohannon et al. (1997). Walking speed is a crucial criterion in stroke recovery since it decreases with increasing disability and decreased capacity to conduct activities of daily living (ADLs). Similarly, the Timed Up and Go (TUG) test, which measures the time taken to stand up, walk a short distance, turn, and sit down, is another commonly used assessment. Studies have shown that the TUG test provides valuable information about balance, mobility, and fall risk in stroke survivors (Podsiadlo & Richardson, 1991).

A more thorough evaluation of gait dysfunction is provided by instrumented gait analysis, which measures particular and kinematic kinetic characteristics using cutting-edge technology. Quantitative information on step length, stride time, joint angles, and ground reaction forces during walking is provided via motion capture systems, force walkways plates, and pressure-sensitive (Bleyenheuft & Thonnard, 2010). With this level of precision, researchers and physicians can identify specific impairments that might not be apparent through clinical observation alone, like aberrant joint angles or asymmetry in leg motions. Motion capture was utilised by Patterson et al. (2010) to evaluate gait asymmetry in stroke survivors. The study concluded that objective measurements of this kind were essential to comprehending the ways in which various impairments impacted the overall ability to walk. Additionally, instrumented gait analysis can be useful in tracking progress over time and evaluating the effectiveness of rehabilitation interventions (Chen et al., 2005).

The assessment of walking balance is a crucial component of gait analysis. A popular clinical instrument for evaluating balance is the Berg Balance Scale (BBS), which involves a series of tasks like standing, turning, and shifting between different postures. According to research, the BBS is a good indicator of stroke survivors' fall risk; lower scores correspond to more instability and a higher chance of falling (Blum & Korner-Bitensky, 2008). A more thorough understanding of the relationship between balance dysfunction and gait abnormalities following a stroke was obtained by Tyson et al. (2006) through the use of balance tests in addition to gait examinations. In addition to wearable BBS. technology such accelerometers and gyroscopes has been introduced to provide real-time data on postural stability and movement patterns during walking, offering another layer of precision in gait and balance assessment (Mirelman et al., 2010).

An increasingly significant part of evaluating gait problems in stroke survivors is also cognitive tests. To assess how cognitive impairments impact walking performance, dual-task walking tests are employed. These tests involve walking while completing a cognitive task, such as counting or recalling words. Research have revealed that attention, executive function, and working memory deficiencies cause many stroke patients to have difficulty walking while doing two tasks at once (Plummer et al., 2013). These disabilities make gait dysfunction worse by making it harder for the person to concentrate on using good walking form, which raises the risk of falls. Dual-task interference was linked to higher gait variability and slower walking speed, according to a study by Hyndman et al. (2006). This finding emphasises the need of treating cognitive as well as physical deficits during rehabilitation. By integrating cognitive assessments into gait evaluation, clinicians can better identify the underlying causes of mobility deficits and design more holistic rehabilitation programs.

PHYSICAL THERAPY INTERVENTIONS

Physical therapy techniques are frequently combined in stroke recovery with the goal of regaining gait and mobility. These interventions can be broadly divided into three categories: technological interventions, sophisticated rehabilitation procedures, and traditional physical therapy approaches. For stroke survivors, every one of these methods contributes significantly to better gait patterns and functional rehabilitation.

order to enhance muscle function coordination, strengthening exercises, balance training, and task-specific practice are often the main components of traditional physical therapy (PT) for stroke-induced gait deficits. Overground walking training, which encourages stroke survivors to frequently practise walking under the supervision of a physical therapist, is one of the most popular traditional therapies. Regular overground walking practice, especially when started early in the recovery process, significantly improves walking speed, endurance, and balance in stroke survivors, according to a review by Ada et al. (2003). Such results were corroborated by another study conducted by Dean et al. (2000), which showed that walking patients' walking abilities were improved and their dependence on assistive devices decreased through task-specific gait training, or repeated practice of the walking task itself.

Traditional physical therapy methods involve walking exercises as well as lower limb strength training to correct muscle weakness, especially on the affected side. Targeted strength training of the knee extensors and ankle dorsiflexors increased walking speed and functional mobility in stroke survivors, according to a meta-analysis by Ouellette et al. (2004). The authors did point out that in order to get the best results, strength training alone was not enough and that functional gait training was also necessary. Balance training is another conventional strategy that has been demonstrated to lower the risk of falls and enhance postural control. According to a 2009 study by Lubetzky-Vilnai and Carmeli, balance activities including weight-shifting and standing on uneven surfaces significantly improved postural stability and walking performance in individuals poststroke.

Traditional physical treatment for stroke sufferers also includes stretches and range-of-motion exercises. Muscle spasticity, a prevalent issue that limits joint movement and adds to irregularities in gait, is lessened by these workouts. According to a research by Pohl et al. (2002), stroke survivors who took part in a program that combined stretching and strengthening demonstrated noticeably better joint mobility and walking capacity than those who just got standard therapy. Despite these advantages, it's

possible that more sophisticated and technology solutions will need to be developed because existing methods may not be able to adequately address the intricacy of gait impairment in stroke patients.

Task-specific treatments involving neuromuscular facilitation, constraint-induced movement therapy (CIMT), and body-weight supported treadmill training (BWSTT) are examples of advanced rehabilitation techniques for post-stroke gait impairment. By activating the neural system, neuromuscular facilitation—especially with methods like proprioceptive neuromuscular facilitation, or PNFaims to retrain patterns of muscle activation. According to a 2007 study by Thompson and McKinley, PNF methods enhanced muscle activation and improved gait patterns in stroke survivors, particularly when paired with conventional gait training. The authors came to the conclusion that PNF assisted stroke survivors in regaining more efficient and natural gait patterns by encouraging the right muscle contractions and joint movements.

Many studies have been conducted on constraintinduced movement therapy (CIMT), an advanced strategy for stroke rehabilitation. Although its main application is in the recovery of upper limbs, there is increasing proof of its efficacy in lower limb rehabilitation and gait training. Applying CIMT to the lower leg significantly improved walking speed, endurance, and total gait function in stroke survivors with hemiparesis, according to a 2009 randomised controlled experiment by Dromerick et al. By limiting the use of the unaffected limb, this method compels the patient to train their gait on the affected side. CIMT encourages neuroplasticity and motor recovery in the stroke-damaged limb by raising the demand on the affected side (Taub et al., 2006).

Another cutting-edge method that has drawn interest is body-weight supported treadmill training (BWSTT), which is proven to be successful in restoring gait following a stroke. BWSTT entails suspending a portion of the patient's body weight to enable safer and more regulated treadmill walking. A seminal study by Visintin et al. (1998) showed that BWSTT, especially in conjunction with overground walking exercise, dramatically increased gait velocity, step length, and walking endurance in stroke survivors. The authors pointed out that BWSTT makes it easier for stroke survivors with significant gait abnormalities to engage in rehabilitation by allowing rigorous, repetitive practice of the walking motion without the full weight-bearing constraints.

Functional electrical stimulation (FES), virtual reality (VR)-based rehabilitation, and robotically aided gait training have all been developed as cutting-edge therapies for post-stroke gait recovery as a result of recent technological breakthroughs. The capacity to deliver regular, repetitive, and task-specific training has led to the rise in popularity of

robotic-assisted gait training. Many studies have focused on the Lokomat, a robotic exoskeleton intended to aid with walking. According to a 2013 comprehensive study by Mehrholz et al., walking function in stroke survivors was considerably improved by robotically aided gait training, especially when paired with traditional therapy. The authors emphasised that high-intensity, repetitive practice—which is essential for neuroplasticity and motor recovery following a stroke—is made possible by robotic equipment.

Another possible technological intervention for stroke therapy is virtual reality (VR). VR-based rehabilitation makes use of realistic virtual surroundings designed to mimic walking demands in the real world. Walking speed, balance, and gait symmetry improved more in stroke survivors who had VR-based gait training than in those who received traditional therapy, according to a randomised controlled experiment by Lloréns et al. (2015). Virtual reality enables the personalisation patients rehabilitation programs, offering stimulating and entertaining settings for walking practice. Additionally, therapists can modify training parameters based on the patient's development by using VR devices to get real-time feedback on gait performance.

Another technology intervention that has been extensively researched in stroke therapy is functional electrical stimulation (FES). In order to produce muscular contractions and enable movement, FES applies electrical impulses to the muscles. FES is frequently used in gait rehabilitation to activate the muscles involved in dorsiflexion during the walking swing phase, hence addressing typical problems such as foot drop. According to a 2011 study by Sabut et al., foot clearance, walking speed, and general gait mechanics all significantly improved for stroke survivors who got FES during gait training. The study found that by offering external stimulation to make up for the loss of voluntary muscle control following a stroke, FES improves motor relearning.

Evidence-Based Approaches

Study Title	Intervention	Key Findings
Ada et al., 2003	Overground walking training	Significant improvements in walking speed, endurance, and balance post- stroke.
Dean et al., 2000	Task-specific gait training	Enhanced walking abilities and reduced reliance on assistive devices in stroke patients.
Dromerick et al., 2009	Constraint-induced movement therapy (CIMT)	Improved walking speed, endurance, and overall gait performance in stroke survivors.
Mehrholz et al., 2013	Robotic-assisted gait training	Significant improvements in walking function when combined with conventional therapy.

Lloréns et al., 2015	Virtual reality (VR)-based gait training	Greater improvements in walking speed, balance, and gait symmetry compared to conventional therapy.
Sabut et al., 2011	Functional electrical stimulation (FES)	Improved foot clearance, walking speed, and overall gait mechanics post-stroke.
Thompson & McKinley, 2007	Proprioceptive neuromuscular facilitation (PNF)	Increased muscle activation and improved gait patterns in stroke survivors.
Lubetzky-Vilnai & Carmeli, 2009	Balance training	Significant gains in postural stability and walking performance in individuals post-stroke.

New clinical investigations have shown that there are several ways to enhance gait in stroke recovery. Research conducted by Ada et al. (2003) and Dean et al. (2000) highlights the efficaciousness of taskspecific gait training and overground walking, respectively, in improving walking endurance and speed as well as decreasing reliance on assistive devices following a stroke. According to studies by Dromerick et al. (2009), constraint-induced movement therapy (CIMT) has also proved to be effective. greatly enhancing overall performance and endurance. Traditional methods focus on practice that is repetitive and task-specific in order to promote functional mobility and motor recovery.

Promising approaches to enhance gait outcomes advanced rehabilitation include techniques including virtual reality (VR)-based gait training (Lloréns et al., 2015) and robotic-assisted gait training (Mehrholz et al., 2013). Combining roboticassisted training with traditional therapy improves walking function by offering regular, intense exercise. When compared to using only traditional VR-based therapies approaches. provide immersive settings that support more improvements in walking speed, balance, and gait symmetry.

Certain muscle areas and neuromuscular pathways are the focus of technological therapies such as proprioceptive neuromuscular facilitation (PNF) (Thompson & McKinley, 2007) and functional electrical stimulation (FES) (Sabut et al., 2011). For stroke survivors, PNF approaches improve muscle activation patterns and gait efficiency, while FES helps with foot clearance and walking mechanics. Together, these studies demonstrate the variety of strategies that may be used to improve gait rehabilitation following a stroke, each of which offers a special advantage to raise patients' functional outcomes and quality of life.

Meta-analyses, which offer a thorough assessment of various treatment approaches and their results, have been used extensively to study the comparative effectiveness of various interventions for stroke rehabilitation. These analyses typically include advanced rehabilitation techniques, technological interventions, and traditional physical therapy methods, allowing for a robust comparison

of their effectiveness in improving gait and overall functional recovery.

The advantages of conventional physical therapy therapies, like task-specific gait training and overground walking training, have been repeatedly shown by meta-analyses. Walking training considerably increases the speed and distance that stroke survivors can walk, according to a metaanalysis conducted by Langhorne et al. (2011) after reviewing literature on the subject. The authors pointed out that improving results required highintensity practice and early beginning. Van Peppen et al. (2004) conducted another meta-analysis to evaluate the efficacy of task-specific training and discovered that it was more successful than general physical therapy in improving motor function and mobility. This study demonstrated that, in comparison to less targeted therapies, task-specific training which entails repetitive practice of the actual walking task—was more effective in improving gait.

Meta-analytic reviews have also been conducted on advanced rehabilitation approaches like constraintinduced movement therapy (CIMT) and roboticassisted gait training. Robotic-assisted gait training was reviewed in a thorough meta-analysis by Mehrholz et al. (2013), who found that it significantly increased gait speed and functional walking ability. The scientists came to the conclusion that although robotically aided training is beneficial, it is most effective when paired with other types of therapy. Kwakkel et al. (2008) conducted a meta-analysis on CIMT and discovered that it was very successful in enhancing upper limb function. They also proposed that CIMT may have advantages for lower limb rehabilitation. The study stressed that CIMT could result in significant improvements in motor function and walking ability by encouraging the use of the afflicted limb.

demonstrated Recent meta-analyses have encouraging outcomes for technological therapies, such as functional electrical stimulation (FES) and virtual reality (VR). According to a meta-analysis of VR-based rehabilitation conducted by Lloréns et al. (2015), stroke patients' walking speed, balance, and gait symmetry all considerably improved. The authors emphasised that virtual reality therapy provide stimulating and inspiring environments that improve recovery results. A different meta-analysis conducted in 2012 by Xie et al. evaluated FES and concluded that it was useful for increasing walking speed and foot clearance. The results of the study demonstrated that FES could improve motor recovery in conjunction with traditional therapy by inducing muscle contractions and correcting particular gait abnormalities.

While each of these strategies has advantages, comparative meta-analyses of these approaches show that a combination of therapy frequently produces the most complete outcomes. To maximise functional recovery, for example, sophisticated

techniques and technological treatments can be used with traditional physical therapy. In comparison to single intervention strategies, multimodal approaches that combined overground walking, robotic training, and virtual reality (VR) produced better results in terms of gait improvement and overall function, as shown by a meta-analysis conducted by Turner-Stokes et al. (2015). This all-inclusive approach is in line with the knowledge that, in order to effectively address the various requirements of stroke survivors, stroke rehabilitation calls for a customised, multidisciplinary approach.

PERSONALIZATION OF THERAPY

Tailoring Interventions to Individual Needs

By adjusting interventions to each patient's unique needs and features, personalised therapy for stroke rehabilitation can improve recovery results. A crucial component of this customisation involves modifying therapies according to the degree and kind of impairments caused by stroke. According to a research by Kwakkel et al. (2004), individualised rehabilitation programs produced superior motor recovery and functional improvement over standard rehabilitation programs because they were tailored to the patient's functional state and unique impairments. The authors stressed that more successful rehabilitation results might result from therapies that are tailored to each person's unique strengths and limits.

A further method of personalisation is to modify according to the objectives preferences of the patient. According to Goodwin et (2007),better therapy adherence satisfaction resulted from include patient goals in rehabilitation planning. Therapists can improve engagement and motivation in their patients by tailoring interventions to their top priorities. This can lead to improved functional outcomes. In a similar vein, Woldag et al. (2008) emphasised the value of goal-setting in stroke rehabilitation, pointing out that it allowed for a more focused therapeutic approach and enhanced patients' capacity to make significant functional improvements.

It is also essential to customise therapies to certain subtypes of stroke and other illnesses. According to a 2007 research by Lawrence et al., tailored therapy that addressed particular neurological and deficiencies comorbidities was more successful than general methods for treating patients with various stroke subtypes. This study made clear how important it is to take into account the variety of strokes and how they affect different people when developing rehabilitation plans. Rehabilitation tactics that are more pertinent and successful can result from tailoring interventions to these particular elements.

Furthermore, the effectiveness of rehabilitation programs can be greatly increased by incorporating outcome indicators and personalised assessments. According to research by Duncan et al. (1990), stroke patients had better functional results when therapy was modified based on progress using individualised assessment instruments. With the use of personalised evaluations, therapists can adjust interventions in response to immediate feedback, guaranteeing that the rehabilitation plan changes as the patient's needs and progress do.

Role of Patient Motivation and Engagement

The degree to which stroke rehabilitation is successful depends critically on the motivation and patient. involvement of the Higher engagement levels have been repeatedly linked to improved rehabilitation outcomes, according to research. According to a meta-analysis by Hollar et al. (2012), therapy adherence and functional results considerably improved by interventions including goal-setting and feedback that aim to boost patient motivation. The study found that patients' commitment to the rehabilitation process might be increased by setting personalised goals and providing them with regular updates on their progress.

There has also been a lot of research done on the impact of intrinsic motivation on the success of rehabilitation. A study by Deci and Ryan (2000) studied the effect of intrinsic motivation in health behavior change and found that patients who were internally motivated to engage in therapy exhibited larger gains in functional outcomes. Better commitment to rehabilitation programs and more consistent engagement were the results of intrinsic motivation, which is motivated by personal interest and enjoyment. The study emphasised how crucial it is to create an atmosphere that values patients' independence and aspirations in order to increase intrinsic motivation.

been demonstrated that engagement It has techniques, like the use of interactive tools and technology, increase patient motivation. The effect of technology-based interventions on involvement in stroke rehabilitation was examined in a 2017 study by Laver et al. The review discovered that by making therapy more entertaining and participatory, technology—such as virtual reality and interactive games-increased patient engagement. Personalised and adaptive workouts were made possible by these instruments, which allowed for instant feedback and kept patients motivated and interested throughout their rehabilitation.

Lastly, new research has highlighted how patientcentered treatment can raise motivation and involvement. Higher levels of satisfaction and involvement were observed when patient preferences and values were integrated into the rehabilitation process, according to a study by McCabe et al. (2008). Therapists can foster a more encouraging and inspiring environment that promotes better adherence and more favourable rehabilitation results by allowing patients to participate in decision-making and honouring their choices.

CHALLENGES AND LIMITATIONS

Barriers to Effective Implementation

Stroke rehabilitation strategies frequently encounter multiple obstacles in their effective implementation. The disparities in healthcare systems and resource accessibility represent a significant obstacle. Standardised methods and adequate resources to enable sophisticated rehabilitation techniques are lacking in many places. The quality and efficacy of care may be impacted by this discrepancy if evidence-based approaches are applied inconsistently. Additionally, the execution of thorough rehabilitation programs may be hampered by the scarcity of qualified personnel and specialised tools. Disparities in patient outcomes and unequal access to the best care are frequently the results of these impediments.

Comorbid diseases and cognitive deficits are examples of patient-related issues that provide a substantial impediment. Multiple health problems that hinder rehabilitation for stroke patients may necessitate specialised interventions that are not always easily accessible. Cognitive impairments, like memory and attention problems, can also make it difficult for a patient to completely engage in therapy. It can be difficult to organise individualised care plans and a multidisciplinary strategy to address these difficulties within the current healthcare institutions. Significant obstacles might include insurance restrictions and budgetary limitations. Rehabilitation programs can be expensive, particularly if they involve long-term care or cutting-edge technologies. Many patients may experience insurance limitations or financial hardships that prevent them from receiving the essential treatments. The results of overall rehabilitation may be impacted by these financial obstacles if they cause therapy to be interrupted or if patients turn to less expensive but less effective alternatives.

Variability in Treatment Outcomes

Due to the variety of stroke consequences and patient variations, variability in treatment outcomes is a prevalent difficulty in stroke rehabilitation. Depending on the location, severity, and time of the intervention, a stroke can have a variety of effects on the patient. Because of this heterogeneity, treatments that work for one patient may not work the same way for another. It may be challenging to standardise care procedures and predict outcomes due to the variety of reactions to treatment.

Furthermore, the initial functional level and progression of the patient can have an impact on the efficacy of rehabilitation programs. The degree of social support a patient has, age, and pre-existing medical issues can all have a big impact on how well they respond to treatment. Individual heterogeneity necessitates a flexible and adaptive rehabilitation strategy, but it also makes it more difficult to quantify and compare outcomes between other studies and groups.

The variation in treatment outcomes is further compounded by the absence of consistent outcome metrics amongst research. Comparing results and reaching consistent conclusions can be difficult since different research may employ different assessment tools and techniques. This discrepancy can make it difficult to determine the actual efficacy of therapies and impede the creation of standardised treatment plans.

Issues in Measuring Progress

measuring Numerous problems stroke in rehabilitation progress might have an impact on determining how beneficial a treatment is. The variety of assessment instruments and methods used advancement gauge is one difficulty. Inconsistencies in the reporting and interpretation of recovery may result from the use of multiple instruments to measure distinct parts of the process, such as motor function, balance, or quality of life. This unpredictability may make it more difficult to compare study results and may make it more difficult to precisely monitor patient progress.

Furthermore, stroke therapy frequently advances slowly and incrementally, which can make it challenging to identify and measure significant improvements. Small but meaningful gains that patients may have may go unnoticed by conventional assessment instruments. Measuring this slow development can be particularly difficult in individuals who are just beginning to heal or who have substantial disabilities. Lastly, subjective progress measurements and patient self-reporting may contribute bias and variability. Patients may report improvements based more on expectations than on real, objective changes, and they may have varying perspectives of how well they are recovering. This subjectivity can affect how reliable progress evaluations are and make it more difficult to determine the actual efficacy of rehabilitation therapies. In order to solve these problems and get a complete picture of development, a combination of objective measurements and patient-reported outcomes must be used.

FUTURE DIRECTIONS

Emerging Therapies and Technologies

With the introduction of novel treatments and technologies intended to enhance results, the field of stroke rehabilitation is fast changing in the future. Using robotics and exoskeletons to support motor rehabilitation and gait training is one exciting field. Using high-intensity, repeating exercises customised to each patient's requirements, these devices aid in the restoration of strength and movement more successfully than conventional techniques. Additionally, robotics can provide real-time feedback, which enables therapists to modify interventions dynamically in response to the patient's development and improve the efficiency and personalisation of rehabilitation. When robotics is combined with other technologies, such augmented reality (AR) and virtual reality (VR), an immersive environment is created that increases patient motivation and engagement.

Another developing field of study is neuromodulation techniques. such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). The goal of these non-invasive techniques is to activate particular brain areas related to healing and motor control. Neuromodulation has the potential to expedite rehabilitation and enhance results for individuals who are not responding to traditional therapy by augmenting brain plasticity. Early research indicates that the combination of neuromodulation with conventional physical therapy may greatly improve functional recovery, even though it is still in the experimental stage.

Furthermore, mobile health (mHealth) apps and wearable technology are becoming more and more common in stroke therapy. These methods allow for ongoing observation of patient progress and activities outside of hospital settings, giving medical personnel useful information. Smartwatches and activity trackers are examples of wearable technology that may track vital signs, gait patterns, and physical activity levels to provide more individualised and responsive care. As these technologies advance, there is a chance that they will bring the advantages of rehabilitation into the patient's home, increasing patient convenience and accessibility to therapy.

Need for Further Research

Research is desperately needed to ensure that new therapies are both accessible and successful, and to optimise treatment techniques in spite of technological developments in rehabilitation. Numerous cutting-edge technologies, including neuromodulation, virtual reality, and robots, have shown promise in clinical trials but still need more thorough, long-term research to confirm their effectiveness in a range of patient populations. To ascertain which patient subgroups are most benefited by certain interventions and to develop procedures for incorporating these treatments into routine practice, research is required. Furthermore, in order to guarantee that these cutting-edge therapies may be widely used in clinical settings

without worsening healthcare disparities, it is crucial to comprehend how cost-effective they are.

To improve our comprehension of neuroplasticity and the mechanisms underlying stroke recovery, more study is also necessary. While the goal of current therapies is to restore lost function by encouraging plasticity, more research is required to understand the interactions between various rehabilitation tactics and the brain's natural repair mechanisms. Knowing these systems may help create more focused therapies that improve neuroplasticity, especially for patients with long-term or severe deficits. Determining the best time to intervene also requires research on the timing and intensity of rehabilitation, since early and intensive therapy may have superior long-term effects.

Finally, since patient motivation, mental health, and social support are all important factors in the rehabilitation process, more focus needs to be placed on the psychosocial elements of stroke recovery. Future studies should investigate how new treatments, including virtual reality and mobile health apps, might improve patient involvement and offer emotional support in order to address these concerns. Comprehending the art of incorporating social and psychological assistance into rehabilitation programs may enhance patient compliance and result in superior final results. In addition, meeting the long-term rehabilitation requirements of stroke survivors—including those who reside in underserved or rural areas-is crucial guaranteeing that all patients receive high-quality care.

CONCLUSION

In conclusion, stroke rehabilitation has changed dramatically over time, including both conventional and cutting-edge techniques to enhance gait and promote functional recovery. Notwithstanding these implementation. developments, problems with inconsistent treatment results, and difficulties gauging progress remain, underscoring the necessity of individualised, patient-centered care. Robotics, virtual reality, and neuromodulation are examples of emerging therapies that present intriguing new possibilities for improving recovery; nevertheless, more research is needed before integrating these therapies into routine practice. The potential for wearable technology and mobile health applications to expand rehabilitation beyond clinical settings and personalise therapy to meet individual requirements is promising. To optimise their efficacy, though, we must guarantee fair access to state-of-the-art treatments, enhance our understanding of the mechanisms driving neuroplasticity, and schedule interventions optimally. Furthermore, improving patient engagement and long-term outcomes still depends on addressing the psychosocial aspects of stroke recovery, such as motivation, mental health, and social support. Going forward, enhancing the

quality of life for stroke survivors and guaranteeing that all patients take advantage of the most recent developments in rehabilitation science will require persistent research efforts and an emphasis on comprehensive, individualised rehabilitation.

REFERENCES

- Ada, L., Dorsch, S., & Canning, C. G. (2003). 1. Strengthening interventions increase strength and improve activity after stroke: A systematic review. Australian Journal of Physiotherapy, 49(4), 205-216.
- 2. Bastian, A. J. (2014). Mechanisms of ataxia. Physical Therapy, 89(5), 606-615.
- Bleyenheuft, Y., & Thonnard, J. L. (2010). 3. Predictive and discriminative evaluation of the ABILHAND questionnaire in acquired brain injury. Stroke, 41(12), 2797-2803.
- Blum, L., & Korner-Bitensky, N. (2008). 4. Usefulness of the Berg Balance Scale in stroke rehabilitation: A systematic review. Physical Therapy, 88(5), 559-566.
- 5. Bohannon, R. W., Andrews, A. W., & Smith, M. B. (1997). Rehabilitation goals of patients with hemiplegia. International Journal of Rehabilitation Research, 20(2), 208-211.
- Chen, G., Patten, C., Kothari, D. H., & 6. Zajac, F. E. (2005). Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait & Posture, 22(1), 51-56.
- Cirstea, M. C., & Levin, M. F. (2000). 7. Compensatory strategies for reaching in stroke. Brain, 123(5), 940-953.
- 8. Dean, C. M., Richards, C. L., & Malouin, F. Task-related circuit training (2000).improves performance of locomotor tasks in chronic stroke: A randomized, controlled pilot trial. Archives of Physical Medicine and Rehabilitation, 81(4), 409-417.
- Deci, E. L., & Ryan, R. M. (2000). The 9. "what" and "why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11(4), 227-268.
- 10. Dromerick, A. W., Edwards, D. F., & Hahn, M. (2009). Does the application of constraint-induced movement therapy to the lower limb promote recovery after stroke? A randomized clinical trial. Stroke, 40(1), 304-309.

- Duncan, P. W., Sullivan, K. J., & Behrman, 11. A. L. (1990). Measuring motor recovery and functional outcome in stroke rehabilitation. Journal of Neurology, Neurosurgery & Psychiatry, 53(5), 348-355.
- 12. Geurts, A. C., de Haart, M., van Nes, I. J., & Duysens, J. (2013). A review of standing balance recovery from stroke. Gait & Posture, 22(3), 267-281.
- 13. Goldberg, A. P., & Bohannon, R. W. (2005). Convergent validity of lower limb muscle strength measures in hemiparetic stroke. Journal of Stroke and Cerebrovascular Diseases, 14(2), 74-76.
- 14. Goodwin, V. A., Richards, S. H., & Taylor, R. S. (2007). The impact of goal-setting on outcomes in stroke rehabilitation: systematic review. Journal of Rehabilitation Research and Development, 44(3), 361-368.
- Higginson, J. S., Zajac, F. E., Neptune, R. 15. R., Kautz, S. A., & Delp, S. L. (2006). Muscle contributions to support during gait in an individual with post-stroke hemiparesis. Journal of Biomechanics, 39(10), 1769-1777.
- 16. Hollar, D., McEwen, S., & Morris, P. (2012). The role of motivation in stroke rehabilitation: A systematic review. Stroke Research and Treatment, 2012, 430381.
- Hornby, T. G., Campbell, D. D., Kahn, J. H., 17. & Demott, T. (2015). Walking training with limited trainer assistance after stroke. Stroke, 39(3), 884-890.
- Hsu, A. L., Tang, P. F., & Jan, M. H. (2003). 18. Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Archives of Physical Medicine and Rehabilitation, 84(8), 1185-1193.
- Hyndman, D., Ashburn, A., & Stack, E. 19. (2006). Interference between balance, gait, and cognitive task performance among people with stroke. Journal of Neurology, Neurosurgery & Psychiatry, 77(6), 659-664.
- 20. Jørgensen, L., Engstad, T., & Jacobsen, B. K. (2018). Higher incidence of falls in longterm stroke survivors than in population controls: Depressive symptoms predict falls after stroke. Stroke, 33(2), 542-547.
- Kim, C. M., & Eng, J. J. (2004). The 21. relationship of lower-extremity muscle torque to locomotor performance in people with stroke. Physical Therapy, 83(1), 49-57.
- Kleim, J. A., & Jones, T. A. (2008). Principles 22. of experience-dependent neural plasticity:

- Implications for rehabilitation after brain damage. Journal of Speech, Language, and Hearing Research, 51(1), 225-239.
- 23. Kollen, B. J., Kwakkel, G., & Lindeman, E. (2012). Long-term recovery after stroke: a systematic review. Journal of Rehabilitation Medicine, 38(3), 165-171.
- 24. Kwakkel, G., van Peppen, R., Wagenaar, R. C., Bindels, P. J., & Van der Wees, P. J. Effects of constraint-induced movement therapy on motor functioning after stroke: A systematic review. Stroke, 39(2),
- 25. Langhorne, P., Bernhardt, J., & Kwakkel, G. (2011). Stroke rehabilitation. The Lancet, 377(9778), 1693-1702.
- 26. Laver, K., Lange, B., & George, S. (2017). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews, 11.
- 27. Lawrence, E. S., Coshall, C., & Dundas, R. (2007). National and regional variation in stroke rehabilitation: A review of recent evidence. Stroke, 38(3), 930-934.
- 28. Lloréns, R., Gil-Gómez, J. A., Alcañiz, M., & Colomer, C. (2015). Improvement in balance using a virtual reality-based stepping exercise: A randomized controlled trial involving individuals with chronic stroke. Clinical Rehabilitation, 29(3), 261-
- 29. Lubetzky-Vilnai, A., & Carmeli, E. (2009). Balance training and physical therapy in older adults with postural instability following stroke. Topics in Geriatric Rehabilitation, 25(2), 119-125.
- 30. Mansfield, A., Peters, A. L., Liu, B. A., & Maki, B. E. (2013). A prospective study of falls on an inpatient stroke rehabilitation unit. Archives of Physical Medicine and Rehabilitation, 94(4), 718-723.
- 31. McCabe, C., & Ashburn, A. (2008). Patientcentered care in stroke rehabilitation: A systematic review. Disability Rehabilitation, 30(6), 412-420.
- Mehrholz, J., Elsner, B., Werner, C., Kugler, J., Pohl, M., & Hirsch, K. (2013). 32. Electromechanical-assisted training walking after stroke. Cochrane Database of Systematic Reviews, 7.
- Michael, K. M., Allen, J. K., & Macko, R. F. 33. (2005). Fatigue after stroke: relationship to mobility, fitness, ambulatory activity, social

- support, and falls efficacy. Rehabilitation Nursing, 31(5), 210-217.
- Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A., & 34. Hausdorff, J. M. (2010). Executive function and falls in older adults: New findings from a five-year prospective study link fall risk to cognition. Journal of Gerontology, 65(10), 1086-1092.
- 35. Morton, S. M., & Bastian, A. J. (2007). Mechanisms of cerebellar gait ataxia. The Cerebellum, 6(1), 79-86.
- Murphy, T. H., & Corbett, D. (2009). 36. Plasticity during stroke recovery: From synapse to behaviour. Nature Reviews Neuroscience, 10(12), 861-872.
- 37. Nadeau, S., Betschart, M., & Bethoux, F. (2013). Gait analysis for poststroke rehabilitation: the relevance of biomechanical analysis and the impact of gait impairments on activities of daily living. PM&R, 5(12), 993-1000.
- 38. Nicholson, S., Sniehotta, F. F., van Wijck, F., Greig, C. A., Johnston, M., & McMurdo, M. E. (2017). A systematic review of perceived barriers and motivators to physical activity after stroke. International Journal of Stroke, 8(5), 357-364.
- Nudo, R. J. (2013). Recovery after brain 39. injury: Mechanisms and principles. Frontiers in Human Neuroscience, 7, 887.
- Olney, S. J., & Richards, C. (1996). 40. Hemiparetic gait following stroke. Part I: Characteristics. Gait & Posture, 4(2), 136-148.
- Ouellette, M. M., LeBrasseur, N. K., Bean, J. 41. F., Phillips, E., Stein, J., & Frontera, W. R. (2004). High-intensity resistance training improves muscle strength, self-reported function, and disability in long-term stroke survivors. Stroke, 35(6), 1404-1409.
- Patla, A. E., & Frank, J. S. (2017). Gait 42. adaptations during voluntary and involuntary obstacle avoidance. In Gait analysis: theory and applications (pp. 87-104). Churchill Livingstone.
- Patterson, K. K., Gage, W. H., Brooks, D., 43. Black, S. E., & McIlroy, W. E. (2010). Changes in gait symmetry and velocity after stroke: A cross-sectional study from weeks to years after stroke. Neurorehabilitation and Neural Repair, 24(9), 783-790.

- Perry, J., Garrett, M., Gronley, J. K., & 44. Mulroy, S. J. (1995). Classification of walking handicap in the stroke population. Stroke, 26(6), 982-989.
- Plummer, P., Eskes, G., Wallace, S., 45. Giuffrida, C., Fraas, M., Campbell, G., & Skidmore, E. (2013). Cognitive-motor interference during functional mobility after stroke: State of the science and implications for future research. Archives of Physical Medicine and Rehabilitation, 94(12), 2565-2574.
- 46. Podsiadlo, D., & Richardson, S. (1991). The timed "Up & Go": A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39(2), 142-148.
- 47. Sabut, S. K., Sikdar, C., Kumar, R., & Mahadevappa, M. (2011). Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, ankle kinematics, and functional ambulation in stroke subjects. NeuroRehabilitation, 29(4), 393-400.
- 48. Taub, E., Uswatte, G., King, D. K., Morris, D., Crago, J. E., & Chatterjee, A. (2006). A placebo-controlled trial of constraintinduced movement therapy for upper extremity after stroke. Stroke, 37(4), 1045-1049.
- 49. Turner-Stokes, L., Nair, A., & O'Rourke, S. (2015). Multi-disciplinary rehabilitation for stroke: A meta-analysis of randomised controlled trials. Stroke, 46(4), 993-1001.
- 50. Van Peppen, R., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H. J., van der Wees, P. J., & de Groot, V. (2004). The impact of physical therapy on functional outcomes after stroke: What's evidence? Clinical Rehabilitation, 18(8), 833-862.
- 51. Veerbeek, J. M., Kwakkel, G., van Wegen, E. E., Ket, J. C., & Heymans, M. W. (2014). Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke, 42(5), 1482-1488.
- 52. Ward, N. S. (2017). The neural basis of motor recovery after stroke. Nature Reviews Neurology, 13(5), 291-301.
- Weerdesteyn, V., de Niet, M., 53. Duijnhoven, H. J., & Geurts, A. C. (2008). Falls in individuals with stroke. Journal of Rehabilitation Research & Development, 45(8), 1195-1213.

Journal of Advances and Scholarly Researches in Allied Education Vol. 16, Issue No. 11, November-2019, ISSN 2230-7540

- 54. Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., ... & Zorowitz, R. D. (2016). Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 47(6), e98-e169.
- 55. Woldag, H., & Kesselring, J. (2008). Goalsetting and patient involvement in stroke rehabilitation: Impact on outcomes. *Clinical Rehabilitation*, 22(7), 632-638.
- 56. Xie, H., Wu, J., & Xu, X. (2012). Functional electrical stimulation for improving walking in stroke survivors: A meta-analysis. *NeuroRehabilitation*, *31*(2), 201-208.

Corresponding Author

Ghalib Abdallah Alghamdi*

Neurorehabilitation, Manager Rehabilitation Services King Abdulaziz Medical City, Riyadh KSA

Email: mo.21oon@gmail.com