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Abstract - Mittag-Leffler functions, introduced by Gösta Mittag-Leffler in 1903, play a pivotal role in 
fractional calculus and numerous applied sciences. They generalize exponential functions and are 
characterized by their rich structure, which enables modeling of processes exhibiting memory and 
hereditary properties. The Mittag-Leffler function emerges as a natural solution to fractional differential 
equations, making it invaluable in areas such as viscoelasticity, anomalous diffusion, and control theory. 
Recent advancements have extended its applications to stochastic processes, bioengineering, and 
mathematical physics. This paper explores the fundamental properties, analytical behavior, and diverse 
applications of Mittag-Leffler functions, highlighting their importance in solving complex real-world 
problems. 
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INTRODUCTION 

The Mittag-Leffler function, named after the Swedish 
mathematician Gösta Mittag-Leffler, is a generalization 
of the exponential function and a cornerstone in 
fractional calculus and complex analysis. First 
introduced in 1903, it was originally developed to study 
series expansions and later found extensive 
applications in modeling non-exponential relaxation 
phenomena in various scientific disciplines. The 
function is defined mathematically as  

 

where z is a complex number, α>0 controls the growth 
rate, and β shifts the argument of the gamma function. 
Special cases of the Mittag-Leffler function include 

, which reduces to the classical 

exponential function, and   which is integral 
to solving fractional telegraph equations. This 
versatility highlights its relevance in both classical and 
fractional systems. 

One of the most remarkable properties of the Mittag-
Leffler function is its entire nature, being holomorphic 
across the entire complex plane. It converges for all 

complex z when α>0, and its behavior for large ∣z∣ can 
be described using asymptotic expansions. For 
instance, when α=1, the function aligns with the 

exponential decay . It also admits an integral 
representation, given by  

 

is a contour in the complex plane. This integral 
formulation provides insights into its deep 
connections with other special functions and allows 
for analytical continuation in various contexts. 

The Mittag-Leffler function's utility extends far 
beyond pure mathematics. In fractional calculus, it is 
a fundamental solution to fractional-order differential 
equations, enabling the modeling of systems with 
memory effects, such as viscoelastic materials. In 
physics, it describes anomalous diffusion processes, 
including sub-diffusion and super-diffusion, which 
deviate from classical Brownian motion. The function 
is also pivotal in control theory, where it models non-
linear dynamics in fractional-order systems, and in 
signal processing, aiding in the analysis of systems 
with power-law characteristics. Furthermore, its role 
in relaxation and oscillation phenomena is significant 
in materials science and dielectric studies, where it 
describes non-exponential relaxation and oscillatory 
behavior. 

Numerical computation of the Mittag-Leffler function 
requires careful consideration due to its complex 
nature. Series expansions are commonly used for 
small arguments, while asymptotic approximations 
are employed for large arguments. Additionally, 
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numerical techniques involving contour integrals are 
applied to evaluate the function in specific scenarios. 
Modern computational tools, including MATLAB and 
Python libraries, provide efficient implementations for 
evaluating the Mittag-Leffler function across various 
parameter ranges. The function has also been 
generalized into multi-parameter and matrix forms, 
allowing for greater flexibility in addressing complex 
systems and equations, such as matrix Mittag-Leffler 
functions for matrix differential equations. 

The Mittag-Leffler function's importance lies in its 
ability to bridge classical mathematical concepts with 
emerging fields, making it indispensable in theoretical 
and applied sciences. From its historical origins in 
complex analysis to its modern applications in 
fractional calculus, physics, and engineering, the 
Mittag-Leffler function continues to be a vital tool in 
understanding and modeling complex systems. Its 
ability to generalize the exponential function, coupled 
with its rich analytical properties and broad 
applicability, underscores its significance in 
contemporary mathematics and science. 

PRELIMARIES 

Riemann-Liouville Fractional Derivative The classical 
Riemann-Liouville fractional derivative [132] of order 

 usually defined by 

…..1 

where the integration path is a line from 0 to x in the 
complex t-plane. For the case (m-1)< Re 

( )<m(m=1,2,3,... ),.. it is defined by 

…..2 

The extended Riemann-Liouville fractional derivative 
operator was defined by Özarslan and Özergin as 
follows: 

…..3 

In the above  

 
and  

….4 

where the path of integration is a line from 0 to x in the 
complex t-plane. For the case  p→0 ,we obtain the 
classical Reimann-Liouville fractional derivative 
operator. 

Again Özarslan and Yilmaz extended the Mittag-Leffler 
function defined by 

…..5 

…...6 

is the prolonged Euler’s Beta function demarcated in 
[25] 

Above Mittag-Leffler function can be derived by 
using the following relation given by Chaudhary et 
al.,  Chaudhary and Zubair  and 

…….7 

Part-1: 

In this section, we introduce and study the following 
extended form of Mittag-Lefflerfunctiondefined as 
follows: 

…….8 

……9 

Foremost Outcomes: 

Theorem: 1 

 

…
…10 

Proof: 

Using the definition of extended Riemann-Liouville 
fractional derivative given by (3) in the left hand side 
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of (10) and substituting the value of Mittag Leffler type 
function from the equation mentioned in the 
introductory section,  we find that 

 

 

Moving the order of summation and integration and 
stroking  t = xu  , we obtain 

 

By substituting the equation 8 in the above one we can 
get the desired results. 

Differentiation formula: 

Theorem-2:  

For the extended MittagLeffler function, the following 
differentiation formula holds: 

……11 

Proof: 

We prove this theorem by applying principle of 
mathematical induction method. We start with n=1 

……1
2 

 

 

Therefore,  

…..13 

Therefore, the result from equation 11 is true for n=1 

Then let assume the result in 12 equation is true for 
n=k , which is  

 

By using equation 13, we can have  

 

As the result is true for the value of n= k+1, 

henceforth the theorem is true for all n ∈ N 

Theorem-3: 

…...14 

Proof: 

Lets start with n= 1 in equation 14, we obtain 

…..15 

Substituting, n=m+1 in equation 15 and using the 
pochhammer symbol property and gamma function, 
we have  

 

…..16 

By differentiating the equation 16 we will have the 
following 

…..17 

Substituting n = s+1 and using the pochhammer 
symbol property and gamma function in equation 17  

We get  
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Therefore, we get  

 

By iteratively applying this process n times, we arrive 
at the desired outcome. 

Analysis of Mittag-Leffler Functions and Applications: 

The Mittag-Leffler function has emerged as an 
essential component in the fields of mathematical 
analysis and applied sciences. It offers a complete 
framework that can be used to address complex 
problems that exceed the limitations of traditional 
models. This function was first proposed by Gotta 
Mittag-Leffler in the early 20th century. It is articulated 
in a manner that extends the exponential function and 
creates a major interaction with fractional calculus for 
the first time. Specifically, the mathematical 
formulation emphasises on characteristics that allow 
for interpolation between exponential and power-law 
behaviours. As a result, it is especially effective at 
characterising phenomena that exhibit memory effects, 
anomalous diffusion, and non-linear dynamics. A great 
amount of attention has been paid to the Mittag-Leffler 
function in a variety of fields, such as physics, 
engineering, control theory, and computational 
mathematics. This is due to the extraordinary 
adaptability of the function as well as the richness of 
its analytical properties.  

One of the most notable characteristics of the Mittag-
Leffler function is its ability to fulfil the role as a 
connector between fractional and classical systems. 
When it comes to correctly describing real-world 
phenomena that include memory or hereditary traits, 
conventional frameworks that are based on integer-
order calculus usually presume exponential growth or 
decay processes. This may render these frameworks 
inadequate. On the other hand, the Mittag-Leffler 
function provides a solid foundation for solving 
fractional differential equations since it is inherently 
intended to deal with the complications that are 
involved. Because of this, it is an essential tool in 
fractional calculus, which is a branch of mathematics 
that extends the scope of classical calculus by 
expanding the concepts of derivatives and integrals to 
include orders that are not integers. In these kinds of 
situations, the Mittag-Leffler function develops as a 
natural extension of the exponential function. It is seen 
in the solutions of differential equations that reflect a 
wide variety of engineering and physical physical 
events.  
 
For example, the Mittag-Leffler function is able to 
handle a wide variety of parameter options, which 
have a significant impact on the features and 

applications of the function. This demonstrates the 
function's adaptability. Using these parameters, the 
function is able to represent a wide range of 
processes, from quick decay to protracted tail 
characteristics. It is capable of simulating all of these 
processes. Because of its amazing adaptability, it has 
been able to be used in the investigation of anomalous 
diffusion, which is a phenomena that occurs in 
complex systems such as biological tissues, porous 
media, and financial markets. Anomalous diffusion is 
distinct from the conventional Gaussian diffusion, 
exhibiting features of either sub-diffusion or super-
diffusion. These traits are effectively described by 
fractional-order equations that include the Mittag-
Leffler function. Its relevance in the modelling of 
complex system dynamics is highlighted by the fact 
that it is able to articulate processes that depart from 
standard diffusion rules.  

The Mittag-Leffler function demonstrates its 
analytical skills in a number of different domains, one 
of which is the description of relaxation and 
oscillatory events. This particular function is used to 
describe viscoelastic behaviour in the field of 
materials science. This is a kind of behaviour in 
which materials exhibit properties that are 
characterised by both elasticity and viscosity. The 
Mittag-Leffler function, in contrast to conventional 
models, which make use of exponential functions to 
characterise stress-strain relationships, successfully 
includes the power-law characteristics that are 
inherent in viscoelastic reactions. Because of this, it 
is a very useful tool for understanding materials that 
exhibit behaviours that are reliant on memory. In a 
similar fashion, this function performs the function of 
characterising non-exponential relaxation within the 
realm of dielectrics. This is a phenomenon that is 
frequently observed when the polarisation of a 
dielectric substance that is subjected to an electric 
field decreases at a rate that is more gradual than 
what conventional exponential models would 
suggest. These kinds of applications highlight the 
relevance of this concept in terms of clarifying the 
complex dynamics of systems that are marked by 
fundamental memory effects.  

The use of the Mittag-Leffler function extends 
beyond the confines of the physical sciences, and it 
also finds importance in the fields of engineering and 
control theory. In order to model system dynamics 
that are marked by memory or hereditary qualities, 
fractional-order systems commonly make use of the 
Mittag-Leffler function. These systems may be 
thought of as an extension of the ideas that are used 
in conventional integer-order systems. When it 
comes to the field of control theory, fractional-order 
controllers have shown to be more effective than 
their standard counterparts when it comes to dealing 
with complex systems. The controllers in question 
make use of the Mittag-Leffler function in order to 
develop control techniques that improve both 
stability and performance. These controllers expand 
the capabilities of proportional-integral-derivative 
controllers. As a result of the function's ability to 
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express fractional dynamics, it has become an 
important component in the fields of robotics, signal 
processing, and process control. More specifically, it 
has considerably enhanced the responsiveness of the 
systems to a wide variety of inputs and disturbances.  
 
Beyond the many applications it may be used for, the 
Mittag-Leffler function has outstanding mathematical 
qualities that contribute to its versatility. The fact that 
this function is complete, which indicates that it is 
holomorphic throughout the whole complex plane, 
ensures that it can be managed analytically. At the 
same time as the asymptotic qualities provide useful 
insights into the behaviour of systems at large scales, 
the convergence for all complex arguments 
guarantees the stability of mathematical calculations. 
In addition to this, the function may be expressed in 
integral form, which not only improves its analytical 
continuation but also establishes linkages to other 
special functions. Due to the properties of this topic, it 
is unusually well-suited for addressing problems that 
are associated with complex systems, particularly in 
the field of fractional calculus.  

It is important to take into account the computational 
dimensions of the Mittag-Leffler function since its use 
in real-world circumstances typically involves 
numerical difficulties. In spite of the fact that the series 
representation of the function converges well for 
smaller arguments, evaluating it for bigger arguments 
requires the use of various approaches. In order to 
address these issues, numerical approaches such as 
contour integration and asymptotic approximations 
have been developed. These techniques ensure 
accurate calculation over a wide variety of contexts. 
Advanced methods for the Mittag-Leffler function have 
been included into modern computational instruments, 
such as software libraries in MATLAB, Python, and R. 
This has resulted in the function's increased use 
across a wide range of fields. Because of recent 
advancements in numerical computing, the function is 
now more accessible to scholars as well as 
practitioners, which has resulted in a major expansion 
of its significance.  
 
As a result of the Mittag-Leffler function's role as a 
catalyst for various generalisations, it has been able to 
meet the needs of systems that are becoming more 
complex. Furthermore, multi-parameter versions 
provide additional degrees of freedom, which makes it 
possible for the function to reflect a more 
comprehensive range of behaviours. The expansion to 
matrix arguments, in a similar fashion, makes its use in 
linear systems of differential equations easier to 
accomplish. In these systems, the solutions are 
articulated using matrix Mittag-Leffler functions. The 
generalisations that have been discussed above 
highlight the extraordinary versatility of the function as 
well as its ability to face more complex mathematical 
and physical issues.  

The Mittag-Leffler function is a perfect example of the 
deep interaction that exists between theoretical and 
practical mathematics. This function is located within 
the wide world of mathematical analysis. This was first 

motivated by theoretical studies in complex analysis; 
however, its usefulness has since expanded to include 
practical issues in the fields of physics, engineering, 
and computer science. The original drive for its 
creation was derived from these discoveries. The 
existence of this duality underscores the relevance of 
developing mathematical tools that improve theoretical 
knowledge while also providing answers to problems 
that are encountered in practice. This philosophical 
approach is shown by the Mittag-Leffler function, 
which serves as a bridge between mathematical 
theory and practical application. It is distinguished by 
its complex analytical framework and vast applications.  
 
The inquiry that is now being conducted into the 
Mittag-Leffler function and its expansions gives a 
tremendous opportunity for future advancements in the 
fields of science and technology. As more research is 
conducted into fractional calculus and the many 
applications of this mathematical concept, the 
function's relevance in modelling complex systems is 
likely to increase. Because of its ability to contain the 
dynamics of systems that are defined by memory 
effects, non-linear responses, and anomalous 
behaviours, it has established itself as an important 
tool for studying the intricacies of both the natural 
and artificial environments. Additionally, 
advancements in computing techniques and 
software innovation will lead to an increase in its 
availability, which will make it easier to incorporate it 
into new technologies and scientific achievements.  

In conclusion, the Mittag-Leffler function is a prime 
example of the astonishing potential of mathematical 
creativity to be able to handle complex problems. In 
modern mathematics and applied sciences, it has 
become an indispensable tool due to the fact that it 
is both flexible and precise in its analytical 
capabilities. The investigation of fractional calculus, 
which extends into control theory and other areas, 
demonstrates that the function is able to go beyond 
conventional ideas and accommodate a wide range 
of applications, so confirming that it will continue to 
be significant in the future. As the fields of science 
and technology continue to grow, the Mittag-Leffler 
function will undoubtedly continue to be an essential 
component in mathematical investigation and 
application. This will push breakthroughs in our 
understanding of the complexities of our universe 
and in our ability to express them.  

Application Area: 

An intriguing mathematical construction, the Mittag-
Leffler function has evolved into a flexible tool for 
tackling issues in many different scientific fields. 
Essential to modelling, simulation, and analysis, it 
generalises the exponential function and has strong 
linkages to fractional calculus. The Mittag-Leffler 
function has shown to be very versatile and useful 
throughout its history, from its inception in pure 
mathematics to its many uses in the practical 
sciences. Mathematical theory and computational 
methods have also advanced in response to this 
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function, making them more equipped to handle 
complex systems and ever-changing surroundings. 

The Mittag-Leffler function is useful because it may 
characterise processes that behave in an abnormal or 
non-exponential way. Classical functions, such as the 
exponential function, often operate under idealised 
circumstances that may not adequately represent the 
intricacies found in actual systems. The Mittag-Leffler 
function fills this need by allowing tuning parameters to 
characterise a broad variety of behaviours. Memory 
effects, fractional dynamics, and power-law 
distributions are the most common types of 
phenomena where its adaptability is on display. 
Materials science, biology,  

conomics, and engineering are just a few of the many 
fields that often deal with them. 
When it comes to modelling anomalous diffusion, a 
process that doesn't follow the expected Gaussian 
pattern from standard diffusion equations, the Mittag-
Leffler function has become an indispensable tool in 
the physical sciences. Financial markets, turbulent 
flows, biological tissues, and many other complex 
systems display non-Gaussian behaviours, such as 
lengthy correlations or heavy tails. The fast initial 
changes and the long-term tails of diffusion processes 
may be described by the Mittag-Leffler function, which 
provides a strong foundation for these systems. This 
function is great at capturing the subtleties of sub- and 
super-diffusion, which defy standard diffusion models, 
since its parameters are quite adaptable. 

The function's capacity to simulate memory-based 
systems is shown by its involvement in viscoelasticity. 
The reactions of viscoelastic materials, like polymers, 
combine elasticity with viscosity. Since the stress-
strain behaviour of these materials is dependent on 
their deformation history, exponential functions cannot 
adequately characterise them. A better model for 
similar behaviours is the Mittag-Leffler function, which 
has parameters that can be adjusted and a power-law 
decay. Similarly, in dielectric relaxation, the function 
describes the microscopic principles behind the 
slower-than-exponential loss of polarisation in 
materials subjected to electric fields. 

The Mittag-Leffler function is not only important in 
fractional-order systems in control theory, but it is also 
employed extensively in the physical sciences. The 
integer-order dynamics upon which traditional control 
systems are built presupposes linearity and 
instantaneity of system reactions. On the other hand, 
memory effects and delayed reactions are common 
features of many non-linear systems seen in the actual 
world. To better manage such complexity, fractional-
order controllers are used, which include the Mittag-
Leffler function. The characteristics of the function 
allow for accurate modelling and control of dynamic 
systems, making these controllers particularly useful in 
robotics, process automation, and signal processing. 

Its generalisability is the mathematical beauty of the 
Mittag-Leffler function. This function guarantees 

stability and convergence in analytical and numerical 
applications since it is holomorphic throughout the 
whole complex plane as an entire function. Integral 
representations allow for deeper theoretical inquiry via 
links to other mathematical constructions, while 
asymptotic behaviour offers insights into large-scale 
system dynamics. Because of its many useful 
features, it is a powerful instrument for solving 
problems in computer science and applied 
mathematics. 

The domain of fractional differential equations is one 
where the Mittag-Leffler function is most often used. 
These equations allow for fractional dynamical system 
modelling by expanding classical differential equations 
to include derivatives of non-integer orders. As a 
cornerstone of fractional calculus, the Mittag-Leffler 
function often shows up as a solution to these kinds 
of problems. This function highlights its significance 
in characterising systems displaying non-linear 
damping, long-range dependencies, memory effects, 
and other abnormal behaviours. 

There has been continuous study on numerically 
computing the Mittag-Leffler function because of its 
relevance in real-world applications. Its series 
representation is simple for simple inputs, but 
evaluating the function for complex values or large 
arguments might be difficult because of numerical 
instability or sluggish convergence. Asymptotic 
approximations, numerical integration approaches, 
and specialised algorithms have been created by 
academics to address these challenges. These 
developments have allowed fast and accurate 
computation of the Mittag-Leffler function even for 
complicated cases. Its accessibility to academics 
and practitioners in several domains has been 
enhanced by the availability of implementations in 
computational software packages, which further 
facilitates its usage. 

The original version of the Mittag-Leffler function is 
not the only one that has an influence. Its 
applicability has been broadened to include more 
complex systems due to its generalisations. Mittag-
Leffler functions with more than one parameter may 
simulate more complex processes since their 
behaviour can be fine-tuned. Matrix Mittag-Leffler 
functions, which provide solutions expressed in 
terms of matrix arguments, were also created for use 
in systems of linear equations. These extensions 
show how flexible the function is and how it may be 
used to solve new problems in mathematical 
modelling and practical research. 

Modelling enzyme reactions, gene expression, and 
neural network dynamics are some of the 
computational biological processes that have made 
use of the Mittag-Leffler function. The complex 
behaviours of biological systems, which are often out 
of equilibrium, are well captured by its capacity to 
characterise fractional dynamics and memory 
effects. Market dynamics, risk analysis, and option 
pricing are all models that use the function in 
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economics and finance. Systems with heavy-tailed 
distributions or long-term correlations may be better 
understood using its flexibility and power-law 
properties. 

One cannot emphasise enough how important the 
Mittag-Leffler function is in engineering. Since the 
introduction of fractional-order models, their 
applications in communications, system identification, 
and signal processing have grown substantially. Both 
the precision and the adaptability of descriptions of 
system behaviour are enhanced by these models, 
which expand upon conventional methods. Developing 
sophisticated engineering systems and algorithms has 
been greatly facilitated by the Mittag-Leffler function, 
which is a cornerstone of these models. 

Quantum mechanics, statistical physics, and 
cosmology are some of the theoretical physics fields 
that have made use of the function. As an example, it 
has been used to characterise fractional Schrödinger 
equation-governed quantum systems that exhibit 
memory effects. The use of the function in 
cosmological models of dark energy and cosmic 
development stems from its capacity to characterise 
power-law behaviours and rapid expansion. The 
importance of this instrument in comprehending basic 
natural processes is shown by its many uses. 

New research and innovation opportunities are being 
revealed by the continuous investigation of the Mittag-
Leffler function and its generalisations. Its 
incorporation into existing frameworks for computing 
and its use in new areas like data science and 
machine learning bode well for its future development. 
The flexibility and analytical depth of the Mittag-Leffler 
function will guarantee its persistence in tackling the 
intricacies of contemporary systems, even when new 
scientific and technical difficulties emerge. 

The Mittag-Leffler function is a very useful 
mathematical tool that has many uses in many 
different branches of science. It has become an 
indispensable tool in modern mathematics and 
practical research due to its capacity to generalise 
classical functions, describe complicated dynamics, 
and provide analytical solutions to fractional systems. 
Researchers and practitioners rely on the function 
because to its mathematical rigour and variety, which 
allows it to describe anomalous diffusion, 
viscoelasticity, fractional-order control, and quantum 
events. It is safe to say that the Mittag-Leffler function 
will continue to play a pivotal role in defining the 
trajectory of scientific and technological progress as 
theory and computing progress. 

CONCLUSION 

The Mittag-Leffler function, introduced by Gotta Mittag-
Leffler in the early twentieth century, is an important 
instrument in mathematical analysis and applied 
sciences. It extends the exponential function and 
interacts with fractional calculus for the first time, 
making it useful for characterising phenomena 
including memory effects, anomalous diffusion, and 

non-linear dynamics. Because of its versatility and rich 
analytical features, the function has drawn interest in 
domains such as physics, engineering, control theory, 
and computer mathematics. 

The Mittag-Leffler function is remarkable for its ability 
to link fractional and classical systems, laying the 
groundwork for solving fractional differential equations. 
It can handle a broad range of parameter values, 
exhibiting its versatility in a number of fields, including 
the study of anomalous diffusion and non-exponential 
relaxation in dielectrics. 

The Mittag-Leffler function is also employed in 
materials research to characterise viscoelastic 
behaviour and non-exponential relaxation in dielectric 
materials. In engineering and control theory, fractional-
order systems often employ the Mittag-Leffler function 
to simulate system dynamics with memory or 
hereditary properties. Fractional-order controllers 
outperform ordinary controllers when dealing with 
complicated systems, boosting stability and 
performance. 

The Mittag-Leffler function's exceptional 
mathematical properties contribute to its adaptability, 
such as completeness, asymptotic properties, 
convergence for all complex inputs, and integral 
form. These characteristics make it especially well-
suited for dealing with issues involving complex 
systems, notably in the area of fractional calculus. 

The Mittag-Leffler function is a flexible mathematical 
design that has become an invaluable tool for 
solving complicated issues in a variety of scientific 
domains. It generalises the exponential function and 
has a strong connection to fractional calculus. The 
function has shown adaptability and utility throughout 
its history, from its origins in pure mathematics to its 
many applications in the practical sciences. 
Mathematical theory and computational techniques 
have also progressed in response to this function, 
making them more suited to dealing with complex 
systems and constantly changing environments. 

The Mittag-Leffler function is helpful because it can 
describe processes that operate in an unusual or 
non-exponential manner. Classical functions, such 
as the exponential function, often operate under 
idealised conditions that may not accurately reflect 
the complexities encountered in real systems. The 
Mittag-Leffler function addresses this requirement by 
enabling tuning parameters to characterise a wide 
range of behaviours, including memory effects, 
fractional dynamics, and power-law distributions. It is 
especially helpful for modelling anomalous diffusion, 
which defies normal diffusion equations, as well as 
simulating memory-based systems in viscoelasticity. 

Finally, the Mittag-Leffler function exemplifies 
mathematical creativity's incredible ability to solve 
complicated problems. As science and technology 
advance, the Mittag-Leffler function will surely 
remain an important component in mathematical 
research and application, driving advancements in 
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our comprehension of the intricacies of our universe 
and our capacity to articulate them. 

The Mittag-Leffler function is a critical mathematical 
tool in control theory and physical sciences, enabling 
precise modelling and control of dynamic systems. Its 
generalisability assures stability and convergence in 
analytical and numerical applications, making it an 
effective tool for problem solving in computer science 
and applied mathematics. The function is most 
typically employed in fractional differential equations, 
which extend classical differential equations to 
incorporate derivatives with non-integer orders. 

The Mittag-Leffler function's numerical computing has 
been investigated for its significance in real-world 
applications, with advances such as asymptotic 
approximations, numerical integration techniques, and 
specialised algorithms allowing for rapid and accurate 
calculations. The function's scope has expanded to 
incorporate increasingly complicated systems such 
enzyme processes, gene expression, and neural 
network dynamics. It is also used to market dynamics, 
risk analysis, and option pricing in economics and 
finance. 

The Mittag-Leffler function is also used in quantum 
mechanics, statistical physics, and cosmology to 
describe fractional Schrödinger equation-governed 
quantum systems that exhibit memory effects and 
power-law behaviour. Its adaptability and analytical 
depth make it an invaluable resource in a variety of 
domains, including data science and machine learning. 

To summarise, the Mittag-Leffler function is an 
important mathematical tool in control theory, physical 
sciences, and engineering due to its capacity to 
generalise classical functions, explain complicated 
dynamics, and give analytical solutions to fractional 
systems. 
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