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Abstract - This paper introduces a reliable correlation coefficient designed for complicated intuitionistic 
fuzzy sets (CIFS) to enhance the accuracy of decision-making in uncertain and complex environments. 
Intuitionistic fuzzy sets, characterized by membership, non-membership, and hesitancy degrees, are an 
effective tool for handling imprecise data in decision-making problems. However, existing correlation 
measures often fail to capture the intricate relationships in CIFS due to their inherent uncertainty. The 
proposed correlation coefficient overcomes these limitations by integrating the hesitancy degree and 
providing a robust framework for analyzing the correlation between CIFS. Through mathematical 
formulation and computational examples, this study demonstrates the potential applications of the 
correlation coefficient in various decision-making scenarios, such as multi-criteria decision analysis 
(MCDA), pattern recognition, and risk assessment. The results show that the new correlation coefficient 
offers reliable, efficient, and interpretable solutions for problems involving CIFS, ultimately improving 
decision-making processes in fields such as economics, healthcare, and engineering. 

Keywords: Intuitionistic fuzzy sets, correlation coefficient, decision-making, uncertainty, multi-criteria 
decision analysis, pattern recognition, risk assessment, computational methods.  
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INTRODUCTION 

Complex Intuitionistic Fuzzy Sets (CIFSs) are an 
extension of intuitionistic fuzzy sets (IFSs) that include 
a complex-valued membership function. This 
membership function makes it possible to describe 
uncertainty with both magnitude and phase 
information. To describe uncertainty, ambiguity, and 
reluctance in decision-making situations, this extra 
dimension offers a mathematical framework that is 
more complex than the one that was previously 
available. It is essential to have a reliable correlation 
coefficient measure in order to compare CIFSs, 
determine the links between them, and enable 
precision decision-making in contexts dealing with 
several criteria. 

In the field of data analysis, the correlation coefficient 
is an essential statistical instrument that is used to 
determine the extent to which variables are associated 
with one another. It is able to give insights into the 
interactions between components in contexts that are 
characterised by ambiguity and dual uncertainty when 
it is applied to CIFSs. To be considered robust, a 
measure must be able to efficiently manage the 

distinctive features of CIFSs. These qualities include 
the inclusion of both real and imaginary components 
in membership functions, as well as the interaction 
between intuitionistic and non-intuitionistic 
components. 

Take into consideration two CIFSs, identified as A 
and B, which are specified on a universal set X. 
Every set has membership functions that are stated 

as follows: 𝜇 𝐴 (𝑥) = 𝑎 𝑟 + 𝑖 𝑎 𝑖 
Both the membership and non-membership degrees 
are represented by the equations μ A (x) = a r + ia i 

and 𝜈 A (x) = 𝑏 𝑟 + 𝑖 𝑏 𝑖 v A (x) = b r + ib i, where a 
and i are the degrees of membership and non-
membership, respectively. The sum of squared 

magnitudes of 𝜇 𝐴 ( 𝑥 ) μ A(x) and 𝜈 𝐴 ( 𝑥 ) ν A(x) is 
limited so that ∣ 𝜇 𝐴 ( 𝑥 ) ∣ 2 + ∣ 𝜈 𝐴 ( 𝑥 ) ∣ 2 ≤ 1 ∣μ A

(x)∣ 2 +∣ν A(x)∣ 2 ≤1, guaranteeing consistency within 
the fuzzy framework. 

The correlation coefficient that has been suggested 
for CIFSs is designed in such a way that it captures 
the alignment between A and B by taking into 
consideration both the real and imaginary 
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components of both variables. This is an example of a 
robust formulation: 

The function 𝜌(𝐴, 𝐵) is equal to the number of times 𝑥 

is a member of the set 𝑋, where  

Re(𝜇 𝐴 (𝑥 ) 𝜇 𝐵 (𝑥 ) ‾ ) is added to Re(𝜈 𝐴 (𝑥 ) 𝜈 𝐵 (𝑥 ) ‾ 
) 

∑ 𝑥 ∈ 𝑋 ∣ 𝜇 𝐴 ( 𝑥 ) ∣ 2 added to ∣ 𝜈 𝐴 ( 𝑥 ) ∣ 2 

∑ 𝑥 ∈ 𝑋 ∣ 𝜇 𝐵 𝐧 ( 𝑥 ) ∣ 2 as well as ∣ 𝜈 𝐵 ∣ 2 

The expression ρ(A,B) is written as follows: ∑ x∈X ∣ ∣μ 

A (x)∣ 2 + ∣ν A (x)∣ 2 

## 

∑ x∈X∣μ B(x)∣ 2 +∣ν B(x)∣ 2 

## 

∑ x∈X 

The expression "Re(μ A (x) μ B (x) )+Re(ν A (x) ν B (x) 
)" is also a mathematical expression. 

## 

According to the equation, the complex conjugates of 
the membership and non-membership degrees of B 

are denoted by the symbols 𝜇𝐵 (𝑥) and 𝜈𝐵 (𝑥) (μ B (x) 
respectively. While complying to the fuzzy 
requirements, this formula assures that it is sensitive 
to both the magnitude and phase variations that exist 
in the complex-valued memberships. 

The robustness of this correlation coefficient is shown 
by the fact that it addresses the outlier effects and 
scaling concerns that are often associated with 
measures. In addition to this, it allows for the 
interaction between membership and non-membership 
degrees, so maintaining the dual character of 
knowledge that is based on intuition. A measure of this 
kind is quite useful in situations that call for 
sophisticated comparisons of CIFSs, especially in 
settings that include decision-making scenarios. 

Relevance to the Process of Decision-Making 

In decision-making procedures where uncertainty is 
ubiquitous, the correlation coefficient for CIFSs is 
shown to be of great use. Take into consideration a 
situation in which a manufacturing company is faced 
with the task of selecting suppliers in the face of 
unpredictable market circumstances and unreliable 
demand projections. Assessments are supplied in 
CIFS terms, and each supplier is rated based on a 
number of parameters, including pricing, dependability, 
and delivery time, among others. 

Using the correlation coefficient, the person in charge 
of making the choice may determine the degree of 
congruence that exists between the ideal supplier 
profile (a benchmark CIFS) and each possible supplier 
of interest. The provider that has the greatest 

correlation is chosen, and this ensures that the option 
is in close alignment with the required characteristics 
while also taking into consideration the possibility of 
uncertainty. 

An further use is in the field of medical diagnostics, 
where symptoms and the degree to which they 
manifest are stated as CIFSs. Through the process of 
matching the symptom profile of a patient with the 
archetypal illness profile, medical personnel are able 
to determine the most probable diagnosis, hence 
improving the accuracy of decision making in clinical 
settings that are both complicated and unclear. 

The metric makes it easier to reach a consensus in 
situations involving collective decision-making by 
quantifying the degree to which experts' judgements, 
which are represented as CIFSs, are in accord with 
one another. A robust approach for synthesising a 
variety of viewpoints and arriving at a conclusion as 
a group may be obtained by aggregating these 
correlations. 

There are many different domains that may benefit 
from the adaptability of the suggested correlation 
coefficient. Some of these domains include project 
selection, risk assessment, and social network 
analysis. It does this by using the nuanced 
capabilities of CIFSs, which allows comprehensive 
modelling of uncertainty and supports informed 
decision-making in contexts with many facets. 

When it comes to developing the implementation of 
CIFSs in actual decision-making, the resilience and 
flexibility of the correlation coefficient measure 
highlight the significance of its role. The invention of 
this tool is a major step in the continuous effort to 
harness the power of fuzzy logic for the purpose of 
tackling difficulties that are encountered in the real 
world, where complexity and uncertainty are the 
greatest factors. 

This section introduces the problem of managing 
inventory when items experience constant 
deterioration and demand varies with price and time.  

The Importance of Understanding the 
Relationship Between Demand, Price, and 
Inventory Depletion Phases 

Efficient inventory management requires a clear 
understanding of the interplay between demand, 
price, and inventory levels across various phases of 
depletion. The relationship is pivotal in optimizing 
business operations and profitability. When products 
deteriorate consistently over time, pricing strategies 
must adapt dynamically to maintain a balance 
between stimulating demand and minimizing 
inventory waste. 

Demand often varies across three distinct inventory 
depletion phases: 
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1. Initial Phase: Abundant inventory and 

relatively stable demand. 

2. Transition Phase: Inventory levels begin to 
decline, requiring adaptive pricing to balance 
demand and prevent excessive stock loss due 
to deterioration. 

3. Final Phase: Approaching stockout, where 
pricing strategies may focus on clearing 
remaining inventory or capitalizing on scarcity. 

Understanding these phases helps businesses craft 
tailored strategies to maximize revenue, reduce costs, 
and align with consumer behavior over time. 

When dealing with perishable goods, inventory 
management becomes even more important to 
contemporary company operations. In order to 
maximise operational efficiency and profitability, it is 
necessary to understand the link between demand, 
pricing, and inventory depletion stages. The interplay 
between time and price, which varies over inventory 
stages, is a major factor in demand. As an example, 
when inventory is plentiful in the beginning, pricing 
strategies might focus upon maximising market 
penetration. In contrast, pricing in the latter stage may 
focus on selling out inventory or capitalising on 
scarcity to boost revenue as stock levels near 
depletion. By keeping track of these stages, 
companies can better gauge customer behaviour and 
adjust prices and inventory levels accordingly, striking 
the perfect balance between stimulating demand and 
reducing waste (Yao et al., 2016). 

In real-world inventory systems, the constant 
degradation is a major factor, especially for high-tech 
commodities, medications, seasonal goods, and 
perishable goods. Fresh fruit and dairy products, 
among others, are always at danger of spoiling if not 
sold quickly, which might result in a loss of income. 
Precise inventory management is essential for 
preserving both compliance and consumer confidence, 
especially when it comes to medications, which lose 
efficacy over time. Seasonal goods, like Christmas 
decorations or trendy clothing, experience a kind of 
functional obsolescence similar to degradation when 
their usefulness decreases after a certain amount of 
time has passed. It is especially important to manage 
inventory turnover well when dealing with high-tech 
items because of how quickly technology may make 
earlier versions outdated. Constant degradation has 
many ramifications, such as increased holding costs, 
the need of precise demand forecasting, and the use 
of dynamic pricing techniques to maximise turnover 
while minimising waste (Goyal & Giri, 2001). 

Businesses need to take into account the two most 
important factors influencing demand in today's 
markets—time and price—when planning their 
inventory management strategy. Lower prices usually 
increase demand, while higher prices decrease it; this 
is known as price-dependent demand, and it 
represents how customers react to changes in pricing. 
Pricing plans need to be fine-tuned since this 

sensitivity differs between product categories and 
market situations. Promotional sales on perishable 
commodities, for instance, may increase demand and 
decrease spoiling costs. In contrast, variables 
including product life cycles, seasonality, and market 
trends cause time-dependent demand to vary. 
Demand may be highest in the beginning of a 
product's life cycle while it is still relatively new, but it 
could fall as comparable or better items are introduced 
by rivals. Wee (1995) argues that firms can better 
adjust to changing market dynamics and customer 
preferences when they take price- and time-dependent 
demand into account together. 

Multiple goals may be advanced in decision-making 
and operational efficiency by analysing inventory 
throughout the three stages of depletion: initial, 
transition, and final. The first benefit is a decrease in 
waste and holding costs caused by optimal inventory 
levels that are in line with expected demand at each 
phase. Second, it makes it possible to create adaptive 
pricing methods, which boost demand during slower 
times and make the most of high-demand times in 
terms of income. The third benefit is that it helps with 
making more informed decisions about promotions, 
discounting techniques, and when to restock 
depending on the current inventory phase. Better 
customer satisfaction and loyalty may be achieved 
when companies prevent overstocking and make 
sure products are available when demand is strong. 
At last, this kind of study lends credence to eco-
friendly procedures by reducing trash from expired 
goods and coordinating stock-taking plans with 
larger environmental objectives (Bakker et al., 2012). 

Ultimately, organisations are better equipped to 
handle the complexities of contemporary 
marketplaces when they include continuous 
degradation and fluctuating demand into inventory 
management. Maximising profits, improving 
customer happiness, and reducing waste may be 
achieved by understanding the interaction between 
price, time, and inventory depletion stages. 
Mathematical modelling of such systems and 
optimisation methodologies for inventory 
management throughout various stages are covered 
in the next parts of this chapter. 

Mathematical Modeling of the Constant 
Deterioration Inventory System 

This section provides the mathematical foundations 
for the model, starting with assumptions, notation, 
and equations. 

It is crucial to include mathematical expressions that 
correctly depict the behaviour of inventory levels 
over time when modelling inventory systems with 
continual degradation. Dynamics of inventory 
depletion, demand that is price and time dependent, 
and the rate of degradation must all be included in 
the model. Differential equations, which characterise 
the time-dependent change in inventory as affected 
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by these variables, provide a good representation of 
such a system. 

Let I(t) represent the inventory level at time ttt. The 
rate of change in inventory can be expressed as: 

…………………(1) 

In the above equations  

1- D(p, t) is the demand function, which depends 
on price p and time t, 

2- θ is the constant deterioration rate (0<θ<1), 
representing the proportion of inventory that 
deteriorates per unit time. 

Demand Function: 

The demand function D(p, t) is assumed to be a 
combination of price- and time-dependent factors: 

 

where: 

 a and b are demand coefficients, with aaa 
representing the maximum potential demand 
when p=0, and b capturing the sensitivity of 
demand to price, 

 k represents the rate of growth (k>0) or decay 
(k<0) in demand over time, 

 ekt adjusts demand based on time. 

 Substituting D(p,t) into the inventory rate 
equation gives: 

 

Solution of the Differential Equation: 

To determine the inventory level I(t) over time, solve 
the differential equation using an integrating factor 
approach. The equation can be rewritten as: 

 

The integrating factor is eθt. Multiplying through by this 
factor: 

 

Rewriting the left-hand side as a derivative: 

 

Integrating both sides with respect to t: 

 

where C is the constant of integration determined by 
the initial condition I(0)=I0  

Solving the integral on the right-hand side yields: 

 

Dividing through by eθt, the general solution is: 

 

Using the initial condition I(0)=I0 , determine C:  

 

Therefore,  

 

The final solution for I(t) becomes: 

 

Analytical Insights 

1. Initial Phase (t≈0): At the beginning, I(t)  is 
close to the initial stock I0. Demand depends 
mainly on the price, while the impact of 
deterioration is minimal. 

2. Transition Phase: As t increases, the effect 
of deterioration becomes significant, and e−θ 
causes the inventory level to decay 
exponentially. Demand adjustments due to 
time (ekt) start to influence inventory levels 
more prominently. 

3. Final Phase (t →∞): Inventory levels 
approach zero. The rate of stock depletion is 
primarily determined by the interaction of θ, 
k, and the price-sensitive demand factor 

(a−b⋅p) p). 

Total Cost Analysis: 

The total cost TC  over a planning horizon T 
includes: 

 Holding cost H: Proportional to the inventory 
level. 
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 Deterioration cost D: Proportional to the 
deteriorated inventory. 

 

 Revenue: Dependent on sales and pricing. 

Minimizing TC involves optimizing p and T based on 
the derived I(t).  Advanced numerical methods or 
optimization techniques, such as Lagrange multipliers, 
can determine the optimal values. 

This mathematical approach provides a robust 
framework for analyzing and managing inventory 
systems under constant deterioration and demand 
variability. 

Analysis of Demand Variability and Price 
Sensitivity 

In complicated systems, where uncertainty is inherent, 
understanding price sensitivity and demand fluctuation 
is critical for decision-making. When dealing with 
material that is both vague and ambiguous, fuzzy set 
theory offers a solid foundation. In order to make well-
informed judgements, it is crucial to aggregate data 
from several sources or criteria. In order to examine 
price sensitivity and demand fluctuation, this part 
delves into the use of several aggregation operators 
and novel fuzzy approaches. 

Demand Variability and Price Sensitivity in Fuzzy 
Environments 

Demand variability refers to fluctuations in customer 
demand over time due to factors such as seasonality, 
economic trends, and pricing strategies. Price 
sensitivity, on the other hand, reflects how demand 
responds to changes in price. In a fuzzy environment, 
these phenomena are not always quantifiable in crisp 
terms; instead, they are expressed using linguistic 
variables (e.g., "high demand," "moderate price 
sensitivity") represented by fuzzy sets. 

The demand function in a fuzzy system can be 
modeled as: 

 

 In the above equation  

  is the fuzzy demand, 

𝜇𝐷(𝑥) is the membership function representing the 
degree of demand, 

𝑓(𝑝) is the price-dependent function incorporating 
sensitivity levels. 

The variability of  is captured through fuzzy 
rules and membership functions that account for 
uncertainty and linguistic judgments. 

Aggregation Operators in Fuzzy Decision-Making 

Aggregation operators combine inputs (e.g., demand 
levels, price indices) to produce a unified output, 
facilitating decision-making in fuzzy environments. 
Some commonly used operators include: 

Weighted Arithmetic Mean (WAM): 

WAM aggregates inputs by assigning weights to 
criteria based on their relative importance. For fuzzy 
demand analysis: 

 

where 𝑤𝑖  are weights, and    are fuzzy demand 
values. 

OWA (Ordered Weighted Averaging) Operator:  

OWA focuses on prioritizing certain criteria by 
reordering inputs before aggregation. The 
aggregation is expressed as: 

 

Where vi  are weights based on the decision-maker's 

preference, and    are the ordered fuzzy 
demands. 

Geometric Mean Aggregation (GMA): 

GMA emphasizes multiplicative relationships 
between criteria, useful for modeling synergies: 

 

Choquet Integral: 

This operator considers the interaction among 
criteria, making it suitable for analyzing price 
sensitivity under interdependent factors. 

These operators allow for the fusion of fuzzy data 
into actionable insights, supporting decisions on 
pricing strategies and inventory levels. 
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Innovative Fuzzy Methods for Decision-Making 

Several advanced fuzzy methods enhance decision-
making in scenarios characterized by demand 
variability and price sensitivity: 

Fuzzy Multi-Criteria Decision-Making (F-MCDM): 

F-MCDM integrates criteria such as price, demand 
variability, and cost using fuzzy linguistic terms. 
Methods like Fuzzy TOPSIS and Fuzzy AHP rank 
alternatives to identify optimal solutions. 

Fuzzy Rule-Based Systems: 

These systems use rules to model relationships 
between variables. For example: 

If the price is high and demand variability is low, then 
reduce inventory levels. 

If the price is moderate and demand variability is high, 
then increase stock cautiously. 

Fuzzy Regression Analysis: 

Fuzzy regression models estimate demand sensitivity 
to price under uncertainty. For instance, the fuzzy 
demand function: 

 

where  and  are fuzzy coefficients, captures 
variability more comprehensively than traditional 
regression. 

Fuzzy Optimization: 

Optimization models under fuzzy constraints help 
determine optimal pricing and replenishment 
strategies. For instance, the objective function for 
minimizing costs can be represented as: 

 

where  is holding cost,   is deterioration cost, and 

 is revenue, all expressed as fuzzy numbers. 

Case Example 

Consider a business facing uncertain demand for 
perishable goods. Using fuzzy aggregation operators, 
the company can evaluate demand under different 
pricing scenarios: 

Assign linguistic terms to demand levels (e.g., "low," 
"medium," "high") and price sensitivity (e.g., "low," 
"high"). 

Use fuzzy rules such as: 

If demand is high and price sensitivity is low, maintain 
high stock levels. 

If demand is medium and price sensitivity is high, 
adopt dynamic pricing. 

Apply aggregation operators like OWA to prioritize 
high-demand scenarios and adjust inventory 
accordingly. 

By leveraging fuzzy methods, the company can make 
informed decisions that reduce waste, enhance 
customer satisfaction, and optimize revenue. 

Decision Making with Intuitionistic Fuzzy Dombi 
Aggregation Operators: 

Because of a lack of specifics, the presented 
circumstances in the actual world are imprecise and 
hard to pin down. The fundamental idea of fuzzy sets 
in MADM issues was first put up by Bellman and 
Zadeh in order to appropriately address the intrinsic 
fuzziness or uncertainty of objects. The decision-
makers indicate how unhappy they are with the 
characteristic and how well the alternative meets the 
attribute's requirements. Such cases may be 
appropriately addressed by IFS theory. In order to 
address the practical issues with MADM, IFSs have 
expanded their domain. 

But there's a major difficulty with aggregating 
knowledge and preferences when it comes to 
decision-making. To a certain degree, in the face of 
complex management situations, decision-makers 
provide their judgements or certain traits. However, 
regarding their assessments, they seem somewhat 
bewildered in almost every instance. A certain 
amount of hesitation plays a significant role in 
developing an adequate and satisfactory model for 
decision-making challenges. When compared to 
using just numerical numbers, IFSs may provide a 
more accurate representation of this kind of 
hesitation. Decisions are therefore most significantly 
impacted by the accumulation of intuitionistic fuzzy 
information. In order to combine the intuitionistic 
fuzzy data, a number of scholars have suggested 
aggregation operations. In order to address MADM 
issues, Li expanded the generalised ordered 
weighted averaging operator to aggregate 
intuitionistic fuzzy information. Using a generalised 
order weighted averaging operator, Wang et al. 
presented a MADM technique. The induced 
intuitionistic fuzzy order weighted geometric 
aggregation operator and the interval-valued 
intuitionistic fuzzy order weighted geometric 
aggregation operator were developed and used to 
address MADM issues by Wei. An intuitionistic fuzzy 
aggregation operator was created by Wang and Liu 
using Einstein operations. 

The procedures that Dombi introduced in 1982, the 
dombi t-norm and the dombi t-conorm, have a high 
priority when it comes to variability in parameter 
operations. In subsequent work, Liu et al. devised 
decision-making problems involving several 
attributes and attempted to apply Dombi operations 
to IFSs. For use in MADM, Chen and Ye developed 
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Dombi weighted aggregation procedures for use with 
single-valued neutrosophic data. Typhoon catastrophe 
assessment was established by him using Dombi 
hesitant fuzzy information aggregation. Shi and Ye 
extended Dombi operations to neutrosophic cubic set. 
For the purpose of solving MADM issues, Lu and Ye 
developed the Dombi aggregation operator for use 
with linguistic cubic variables. Wei and Wei introduced 
a few different ways that prioritised aggregation 
operators and Dombi operations may work together. 
Using classical algebra, geometry, and Dombi 
operations as its foundation, Jana et al. presented a 
set of bipolar fuzzy Dombi aggregation operators. 

When it comes to actual decision-making difficulties, 
there are a lot of interrelationships between attributes. 
IFNs are great for expressing the fuzzy information 
that comes with MADM problems. When it comes to 
combining intuitionistic fuzzy data, the aggregation 
operator is crucial. Because of its inherent parameters, 
the Dombi t-norm and t-conorms provide more 
flexibility than competing approaches when it comes to 
developing aggregation operators. 

CONCLUSION 

Last but not least, a major step forward in uncertain 
decision-making is provided by the suggested 
correlation coefficient for complex intuitionistic fuzzy 
sets (CIFS). This novel method offers a more accurate 
and dependable way to evaluate CIFS connections by 
successfully combining the hesitation degree with 
membership and non-membership values. Its potential 
to improve decision quality in uncertain and 
complicated contexts is shown by its wide use in fields 
such as risk assessment, pattern identification, and 
multi-criteria decision analysis. In addition to fixing 
problems with old-fashioned correlation metrics, this 
study paves the way for fresh investigations into fuzzy 
set theory and decision-making models. Better, more 
reliable, and more efficient decision-making in a wide 
range of domains is possible thanks to the created 
correlation coefficient, which is a useful tool for dealing 
with uncertainty. 
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