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Abstract:  We address the numerically reliable computation of generalized inverses of rational matrices in descriptor state-
space representation. We put particular emphasis on two classes of inverses: the weak generalized inverse and the Moore- 
Penrose pseudoinverse. By combining the underlying computational techniques, other types of inverses of rational 
matrices can be computed as well. The main computational ingredient to determine generalized inverses is the orthogonal 
reduction of the system matrix pencil to appropriate Kronecker-like forms. 

-----------------------------♦---------------------------- 

1. INTRODUCTION 

Inverse systems have many important applications in 
areas such as control theory, filtering and coding 
theory. The computation of the so-called zero initial 
state system inverses for linear time-invariant state-
space systems is essentially equivalent to de- terming 
generalized inverses of the associated transfer-
function matrices. For square and invertible systems, 
the computation of inverses can be performed by 
explicit formulas either in the standard state-space or 
in a descriptor system formulation. For non-square 
systems, explicit formulas can be employed only in the 
full-rank case to determine left or right inverses, 
provided that the system feedthrough matrix has full 
rank too. However, these direct formulas do not allow 
to arbitrarily choose the spurious poles which appear in 
the computed left or right inverses. In the more general 
case of systems with transfer-function matrices of 
arbitrary ranks, no explicit formulas can be used. 

In this paper we address the numerically reliable 
computation of generalized inverses of rational 
matrices by using orthogonal matrix pencil reduction 
techniques. We put particular emphasis on the 
computation of two classes of inverses: the weak 
generalized inverse, also known as the (1,2)-inverse, 
and the Moore-Penrose pseudoin- verse. The (1,2)-
inverses can be computed using a numerically reliable 
approach based on the reduction of the system matrix 
pencil to a particular Kronecker-like form. The 
computation of the Moore-Penrose pseudoinverse is 
performed by employing full-rankfactorizations 
resulting from appropriate column/row compressions 
with all-pass factors. By combining the underlying 
computational techniques, other types of inverses of 
rational matrices can be computed as well. We present 
some numerical examples to illustrate our methods, 
and report on recently developed MATLAB software 

devised by the author to compute some generalized 
inverses. 

2. GENERALIZED INVERSES 

Consider a p x m rational matrix with real 
coefficients. Throughout the paper we assume that 

rank over rationals (i.e., has rank r for 

almost all values of ). The zeros of are those 

values of (finite or infinite) where loses its 

maximal rank r. The poles of are those values 

of (finite or infinite) where the elements 

of become infinite. We call proper if it has only 

finite zeros (i.e., is finite). In a system theoretical 

setting, can be interpreted as the transfer-function 

matrix either of a continuous-time system, if  is the 
complex variable s appearing in the Laplace transform, 
or of a discrete-time system, if is the complex 
variable appearing in the Z-transform. Accordingly, we 

call stable if all its poles lie in the appropriate 
stability domain (i.e., the open left half complex plane 
for a continuous-time system or the interior of the unit 
circle for a discrete-time system). Depending on the 

type of the system, the conjugate of is the 

matrix defined as for a 

continuous-time system or for a 

discrete-time system. We say that is all-pass 

if A stable all-pass matrix is called an 
inner matrix. 

Let be an mxp real rational matrix. Consider the 
following Moore-Penrose relations (see, e.g., (Ben 
Israel and Greville, 1976)): 
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The well-known Moore-Penrose 

pseudoinverse is unique and satisfies all 
the four Moore-Penrose relations. Depending on the 

interpretation of forthe same rational matrix we 

have two different pseudoinverses and  for 
a continuous-time and a discrete-time system, 
respectively. 

In solving practical problems, the uniqueness of the 
Moore-Penrose pseudoinverse is rather a 
disadvantage, since no flexibility is provided, for 
example, in assigning the poles of the corresponding 
inverse system to desired locations. Therefore, often 
other types of generalized inverses are preferred. The 

weak generalized inverse  satisfies only 
the first two Moore-Penrose conditions and is therefore 
called a (1,2)-inverse. Weak generalized inverses are 
useful in solving rational matrix equations or in 
computing inner-outer factorizations (Varga, 1998). 

In what follows we will use the notation for all 
types of inverses satisfying one or more Moore-
Penrose conditions. Of particular importance for 
applications are (Ben Israel and Greville, 1976; 
Campbell and Meyer, 1991): the (1)-inverse to solve 
systems of equations with rational matrices, the (1,3)-
inverse to compute least-squares solutions of rational 
matrix equations, the (1,4)-inverse, also known as the 
minimum norm inverse, to compute minimum norm 
solutions of matrix equations. With this nomenclature, 
the Moore-Penrose pseudoinverse is an (1,2,3,4)-
inverse. The left and right inverses, frequently used in 
the control literature, are particular (1,2)-inverses of 
full column rank or full row rank matrices, respectively.  

Note. Our approach to determine generalized inverses 
relies on the standard system inversion concepts 
widely used in the control literature. Therefore, to 
define the generalized inverses using the Moore-

Penrose conditions, we will not assume that  has 

constant rank for all (as is done elsewhere (Sontag, 
1980)). It follows that the generalized inverses 
computed by our methods satisfy pointwise conditions 

1-4 (or part of them) for almost all values of except a 
finite set of points, which includes certainly the poles 

and zeros of  

3. COMPUTATION OF PSEUDOINVERSES 

The numerical computation of Moore-Penrose 
pseudoinverses was only recently addressed in the 
control literature (Oara and Varga, 2000). A 
numerically reliable approach to compute 
pseudoinverses of rational matrices can be devised 
along the lines of the recently developed general 
methods to compress rational matrices to full 
row/column-rank matrices by using left/right 
multiplication with inner factors. This computation is 
the main part of the recently developed algorithms to 
compute inner-outer factorizations of rational matrices 
(Oara and Varga, 1999; 2000). By using "orthogonal" 
compression techniques with inner factors, the 
computation of the Moore-Penrose pseudoinverse of a 

given can be performed as follows: 

1. Compute the full row-rank factorization 

 

where has full row-rank and is square 

inner  

2. Compute the full row-rank factorization 

 

where is invertible and is square 

inner  

Note. We have now the overall "orthogonal" 

decomposition of as 

 

3. Compute 
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This computational approach employing the recent 
compression techniques developed in (Oara and 
Varga, 1999; 2000) is applicable to an arbitrary rank 

rational matrix regardless of whether it is 

polynomial, proper or improper. Furthermore,  can 
have stable or unstable poles and zeros, and even 
poles and zeros on the imaginary axis or on the unit 
circle. 

The main computations in this approach are the row 
compressions performed in Steps 1 and 2. The 
methods proposed in (Oara and Varga, 1999; 2000) to 
perform this compression are based on reducing the 

system pencil to a particular Kronecker- like form 

which isolates the left singular structure of Then 
the compression is achieved by solving for the 
stabilizing solution a standard algebraic Riccati 

equation of order where is the sum of the left 

minimal indices of Note that is usually much 
smaller than the order n of a minimal descriptor 

realization of  

4. COMPUTATION OF OTHER TYPE OF 
INVERSES 

In this section we show how we can compute (1,2,3)- 
and (1,2,4)-inverses by combining the underlying 
techniques to determine (1,2)- and (1,2,3,4)-inverses. 
We also discuss shortly a general approach to 
determining inverses using row/column compression 
techniques. For notational convenience, in this section 

we will denote by G simply a rational matrix  

In the previous section we discussed compression 
techniques of rational matrices by premultiplying them 
with all-pass factors. The following procedure can be 
used to compute a (1,2,3)-inverse of a given G by 
combining row compression with inner factors and 
(1,2)-inverse computation: 

1. Compute the full row-rank factorization 

 

where R has full row-rank and U is square inner. 

2. Compute , a (1,2)-inverse (right inverse) of R, 
using the approach of Section 3. 

3. Compute 

 

It is easy to check that is a (1,2,3)-inverse. Indeed, 

 

and the first three Moore-Penrose relations are 
satisfied. To compute a (1,2,4)-inverse, the above 

procedure can be applied to the transposed matrix  

An alternative approach to calculation of generalized 
inverses can be devised using exclusively row/column 
compression techniques. With a row compression 
followed by a column compression, we can determine a 
full rank factorization of G in the form 

 

with L, T and R being invertible rational matrices. This 
decomposition of G allows us to determine several 
inverses with a specific choice of the transformation 
matrices L and T. In general, a (1,2)-inverse of G can 
simply be computed as 

 

If we use an inner matrix L for the row compression 
and a general matrix T for column compression, then 

the corresponding inverse is a (1,2,3)-inverse, while 
for general L and inner T thecorresponding inverse is a 
(1,2,4)-inverse. If L and T are inner, then the 

inverse is the Moore-Penrose pseudoinverse. 

Compression techniques with inner matrices were 
recently developed in (Oara and Varga, 1999; 2000). 
For compression with general matrices, methods 
proposed in (Oara, 2000) can be employed. These 
methods rely also on pencil algorithms using the 
equivalent descriptor representation of the rational 
matrix G. A particular advantage of this approach is the 
flexibility in choosing the poles and zeros of the 
compressing factor. 

5. NUMERICAL ISSUES 
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All presented computational methods to determine a 
generalized inverse of a rational matrix G(_) have 
overall computational complexity O(n3), where n is the 
order of the underlying descriptor representation G. 
The main advantage of using pencil techniques to 
solve computational problems involving rational 
matrices is that the whole arsenal of well-developed 
linear algebra techniques to manipulate matrix pencils 
can be employed to devise numerically reliable 
algorithms for these rather complex problems. In 
contrast, rational matrix manipulations using 
polynomial techniques are generally considered to be 
numerically less robust than methods based on state-
space representations. It is to be expected that all 
presented techniques can be extended to more general 
systems, as, for instance, periodic time-varying and 
even general time-varying systems. 

For the computation of weak generalized inverses with 
arbitrarily assigned spurious poles and for the 
computation of Moore-Penrose pseudoinverses, Matlab 
functions are available in a recently developed 
Descriptor Systems toolbox (Varga, 2000). The main 
functions rely on a collection of mex-functions 
providing easy-to-use gateways to highly optimized 
Fortran codes from the SLICOT library (Benner et al., 
1999) developed within the NICONET project.

1
 The 

computational layer of basic mex-functions provides 
efficient and numerically robust computational tools to 
perform reductions to Kronecker-like forms, reordering 
of generalized real Schur forms, balancing of 
descriptor systems, minimal realization of rational 
matrices, and other computations. 

6. CONCLUSIONS 

We have proposed numerically reliable methods to 
compute two classes of generalized inverses of 
rational matrices: the (1,2)- or weak inverses and the 
Moore-Penrose pseudoinverses. The proposed 
methods are completely general, being applicable to 
rational matrices of arbitrary ranks regardless of 
whether they are polynomial, proper or improper. 
Particular emphasis has been put on reliably 
computing (1,2)-inverses, because of their relevance to 
many practical applications. The proposed approach 
provides flexibility to cope with various conditions on 
the spurious poles of the computed (1,2)-inverses. For 
instance, a stable (1,2)-inverse can easily be 
computed whenever exists. The computation of other 
types of inverses has been also addressed, by 
combining "orthogonal" compression techniques using 
inner factors with left/right inverse computation. For the 
proposed methods, robust numerical software has 
been implemented. 

Interesting open computational problems in the context 
of determining various types of inverses are posed by 
the exploitation of intrinsic parametric freedom. Two 
aspects could be relevant for control applications: (1) 
determining particular inverses with special properties 
(e.g., a minimal Mc-Millan degree or stable with 
minimal Mc-Millan degree), and (2) generating the 
whole class of inverses by exploiting the 
parametrizations of inverses (see, e.g., (Campbell and 
Meyer, 1991)). In this paper we partially addressed 
only the first aspect. However, a detailed elaboration of 
algorithms to compute least order inverses is still 
necessary. 
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