
Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Development Study of self Managing databases and

its latest achievements

B.CHEENA KESHAVULU
Research Scholar, Manav Bharti University, H.P., India

Abstract: The problem of self-tuning databases has been very important for the last 10 years. Commercial database systems have

been adding features for a long time and have now reached a level of complexity that makes them a difficult choice as a central platform

for information services or e-commerce. It is critical that database systems be easy to manage, predictable in their performance

characteristics and, ultimately, self-tuning. Self-tuning database technology is bound to build on mathematical models and to provide

proper engineering into system components.Today‟s DBMSs should be knob-free and must be able to adapt as conditions change,

without human intervention. An autonomic DBMS should be capable of managing and maintaining itself as well. This paper examines

the characteristics that a DBMS should have in order to be considered autonomic.Optimization of self-tuning models strives to minimize

a programmable goal function that reflects the system designer‟s preferences and the system behavior.

--------------------------♦--------------------------

1. INTRODUCTION

This research focuses on the characteristics of databases
that do not have database administrators and are
considered self-tuning.
To be self-tuning there can be no parameters set by
humans, and the system must be able to adapt as
conditions change. The main investigation is on the
problem of how to make a database “knob-free,” meaning
it has no user-specifiable parameters.

1.1 Definition of Autonomic DBMS
The combination of increased data volumes, large
systems and more functions drive the need for autonomic
database management systems. These databases
operate in the environment with limited intervention by
personnel, thus reducing costs. In general, autonomic
DBMS are capable of managing and maintaining
themselves, adjusting to various circumstances and
preparing their resources to provide efficient handling of
workloads.

These systems are designed in such a way that users can
concentrate on anticipation and accomplishment of their
needs. In this paper, we examine the characteristics that a
DBMS should have in order to be considered autonomic.
The self-managing features of autonomic technologies in
DB2, Oracle and SQL Server illustrate how self-managing
technology can reduce complexity, helping to reduce the
total cost of ownership of DBMSs and improve system
performance.

1.2 Self-tuning Applications

1.2.1 RISC-style Components
The advances made in self-tuning database technology
during the last ten years, have been based on the
paradigm of a feedback control loop. Further advances are
bound to build on mathematical models and their proper
engineering into system components. In addition, the
transformation of information services into truly self-tuning,
higher-level E-services may require a conversion of highly
componentized software (RISC-style components) into
simpler architectures with narrow interfaces.

It is critical that database systems should be easy to
manage, predictable in their performance characteristics,
and ultimately self-tuning. To reach this elusive goal,
RISC-style simplification of server functionality and
interfaces is absolutely crucial.

Database technology is packaged into small RISC-style
data managers with lean, specialized APIs, and with built-
in self assessment and auto-tuning capabilities.
This problem of simple models leads us to the tuning and
administering of large installations.

1.2.2 Active Databases
Active databases systems detect events and trigger
actions as a result. Active capabilities are provided by a
set of rules, with each rule consisting of three components:
event, condition, and action.
A major performance issue in active databases is the
issue of relationships among rule components. Current
implementations of triggers do not allow flexibility in the

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

selection of transaction policies (partition of rules to
transactions), the inter-transaction timing policies of rules‟
components, the inter-transaction policies of commit and
abort dependencies, and synchronization issues.
The self-tuning model consists of the optimization model,
which strives to minimize a programmable goal function
that reflects the system designer‟s preferences and the
system behavior and the application‟s semantics through
constraint definitions. The tuning model strives to optimize
the mutual relationships among the system rules‟
components.

The rest of the paper is organized as follows:

Section 2 examines and discusses the characteristics that
a DBMS should have to be considered autonomic. This
section also outlines the main features of an autonomic
database management system.

Section 3 is a set of case studies, which compare
autonomic characteristics in Oracle, DB2 and MS SQL
Server databases.

Section 4 discusses auto-tuning principles and the
challenges of large databases. We also present RISC-
style architecture, which involves detailed examination of
the self-tuning, RISC-style components of a DBMS.
We evaluate the performance of active databases models.
Two types of coupling modes or decision packages are
shown to exemplify the self-tuning process.
We discuss attempts to adjust individual knobs in
automated tuning and research a methodology that uses a
probabilistic, graphical model, known as an influence
diagram, as the foundation of an effective, automated
approach to software tuning.

Section 5, we conclude with advances in different
database areas, which are trying to simplify models.

2. CHARACTERISTICS OF ADBMS
Database management systems (DBMSs) are a vital
component of many mission-critical information systems
and, as such, must provide high performance, high
availability, excellent reliability and strong security. The
Data Base Administrators (DBAs) who manage these
systems must be knowledgeable in areas such as
capacity planning, physical database design, systems
tuning and systems management.

Autonomic Database Management Systems (ADBMS) are
a desirable long-term research goal.
What are the properties of an autonomic computing
system? To answer that question, let us first discuss the
autonomic characteristics of DBMS systems [1].

2.1 Self-optimizing
Self-optimization is one of the most challenging features in
a DBMS. It allows a DBMS to perform any task and
execute any service utility most efficiently, given the
workload parameters, available resources, and
environment settings. The most important task for
optimization is the execution of a query and that is one of
the most apparent autonomic features of today‟s DBMSs.
Usually query optimization involves query translation, the
generation of a cost-efficient execution plan, and dynamic,
run-time optimizations.

2.2 Self-configuring
The performance of a DBMS depends on the configuration
of its hardware and software components. An autonomic
DBMS should:
• Provide users with reasonable “out of the box”
performance and dynamically adapt its configuration to
provide acceptable, if not optimal, performance under
constantly changing conditions.
• Recognize changes in its environment that
warrant reconfiguration.
• Reconfigure itself without severely disrupting
online operations.
• Provide support for determining the optimal set of
indexes and materialized views to be used by the query
optimizer.

The ADBMS configuration includes performance
parameters, resource consumption thresholds, and the
existence of auxiliary data structures, such as indexes and
materialized views, in the database schema. DBMSs
provide configuration wizards such as DB2‟s Configuration
Advisor. Configuration advisors are tools to assist with
initial configuration, but the settings are usually static.
The goal of an autonomic DBMS is to provide dynamic
adjustment of these settings. Little support is currently
provided for this type of self-configuration.

2.3 Self-healing
Self-healing, a fundamental requirement of a DBMS,
means that the database remains in, or can be restored to,
a consistent state at all times. A DBMS must reliably log all
operations, periodically archive the database, and use the
logs and backups to recover from failure.
Ideally, an ADBMS should recognize when a full or
incremental backup is necessary and perform these
operations with minimal system disruption. In case of
catastrophic failure, an ADBMS should be able to retrieve
the most recent backup, restore to the consistent point just
before the failure, and then resume its halted operations
after handling the exceptions.

2.4 Self-protecting
There are five features of self-protection: database

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

security, privacy, analytical auditing mechanisms, data
encryption, and admission control strategies. These
features shield the DBMS from potential, errant requests
that may deteriorate its performance or bring the DBMS
down. All multi-user DBMSs provide authentication
mechanisms that prevent unauthorized users from
accessing the database. Database privacy ensures that
users are granted access only to the portions of the
database that are required.

2.5 Self-organizing
An ADBMS should be capable of dynamically reorganizing
and re-structuring the layout of data stored in databases
(e.g., tables), associated auxiliary data structures (e.g.,
indexes), and any system-related data (e.g., system
catalog) to optimize performance.

2.6 Self-inspecting
An ADBMS should “know itself” in order to make intelligent
decisions about all the autonomic features discussed. It
must collect, store and analyze relevant information about
its components, performance, and workload. This
information should be used in optimizing performance,
detecting any potential problems, updating statistics about
the stored data, ensuring integrity of data read from disk,
scheduling maintenance utilities, and identifying
interesting trends in the workload.

3. CASE STUDIES
It is useful to evaluate current DBMSs in light of the
properties of autonomic computing systems. Then we can
judge what has been accomplished to date and what
problems left to be solved. This section outlines where
DBMSs are today in their autonomic capabilities. [1]

3.1 Oracle

Self-optimizing
Optimization models in Oracle automatically determine the
appropriate amount of optimization on a per-query basis.
During query execution, cost models will be able to benefit
from the self validation of the cardinality model proposed
by DB2‟s Learning Optimizer. Dynamic adjustment to the
query execution strategy in Oracle consists of automatic
memory allocation so that each query has the appropriate
amount of memory. DB2 and Oracle both provide an
automatic mechanism for query parallelism.

Self-configuring
Oracle provides automatic memory management. These
systems allocate memory as needed by the database,
limiting memory allocation when either a user-imposed
limit is reached or the system‟s physical resources run
low.

Self-healing
Oracle can resume operations (such as a batch load)
following corrective action (such as the addition of more
disk space). Oracle allows the DBA to set a recovery
interval parameter that specifies a target for recovery time
in seconds. All DBMSs support logging, backup and
recovery mechanisms.

Self-organizing
Current DBMSs do not assist in the initial layout of data on
disks and do not shift data from one disk to another to
even out disk demands. However, Oracle does provide the
ability to move tables while on-line.

Self-inspecting
Using the DB2 Health Center or the Oracle Manager
Console, a DBA can examine the system for signs of
unhealthiness and store performance data in a data
warehouse.

3.2 DB2

Self-optimizing
The DB2 optimizer allows the user to adjust the amount of
optimization. In addition to query optimization, a DBMS
must also optimize utilities such as backup, restore,
statistics collection and data load utilities. DB2‟s Load
utility performs mass insertions of data into a target table
by exploiting a series of parallel I/O sub-agents for pre-
fetching, SMP parallelism degree, and the amount of
memory available for buffering and sorting.

Self-healing
DB2 has a recovery tool, the Recovery Expert, which
analyzes the recovery assets available and recommends a
technique to be selected. DB2‟s Automatic Incremental
Restore mechanism uses the backup history for
automatically searching for the correct backup images.

Self-protecting
DB2 and SQL Server provide security on a per table basis,
whereas Oracle provides row-level security. Admission
and application control is essential for ADBMSs to protect
the system from database requests that may deteriorate
performance and/or undesirably consume system
resources.

Self-organizing
To make efficient use of system resources, DB2 permits
dynamic online index-reorganization to reclaim leaf-level
storage.

Self-inspecting
Analysis tools such as The DB2 Performance Expert can
analyze performance data. The Maintenance Advisor

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

examines DB2 statistics and makes recommendations on
what maintenance utilities should be run. Sector
Consistency Checking for page I/Os ensures the integrity
of read data by detecting any corruptions caused, for
example, by incomplete I/Os.

4. CONCLUSIONS
Despite the many advances that have been made towards
autonomic database management systems, much work
remains to reduce the amount of human intervention
required by these systems.
There is still plenty of space in the field of transition from
manual to automatic managing of the systems. Even
though current DBMS provide many tools for initial
configuration, system monitoring and problem analysis, in
most cases, these tasks still require a significant amount
of input, intelligence and decision making from the DBA.
The settings, in most cases, do not automatically adapt to
changes in the system environment or workload, so
dynamic adaptation is needed.
The lack of ability to reset DBMS parameters online will
motivate greater research unless intelligent strategies will
enable autonomic features. Rules of thumb are not
adequate for difficult configuration tasks. More robust
analytical models and prediction mechanisms are
required.

4.1 Focus for Further Research
ADBMS research should focus in four main areas:
1. Developing a proper infrastructure to allow the
clean introduction of autonomic computing system
features.
2. Developing intelligent decision-making and
prediction tools based on feedback control loops and
tractable mathematical models.
3. Exploring and exploiting significant characteristics
and trends in the DBMSs workload using statistical and
data mining techniques.
4. Developing a useful model of the system that
explains the relationships among the numerous
components of a DBMS.

4.2 The Future of DBA’s
Progressing towards ADBMSs will not mean the demise of
DBAs. It will mean the end of repetitive administrative
tasks, freeing DBAs to spend more time on new
applications and on business policies and strategies.
Furthermore, DBAs will be needed to evaluate and select
recommendations before they are implemented.
Autonomic DBMS must have the ability to predict when is
the best time to schedule the execution of utilities that can
be provided by smart maintenance strategies.

ADBMSs should provide auditing mechanisms where logs
are used to track all DBMS activity. Researchers should

be encouraged to make the system architecture of
database technology and the simplification of component
interfaces a top-priority item.

Lean APIs need to be worked out for each of the most
important RISC-style components on different kinds of
query processors and storage managers.

To make a real challenge, the rules should limit the code
size of each component, limit its footprint, and disallow any
kinds of tuning knobs other than what the component does
internally based on its own self-assessment.

In an ideal, simple and cost-efficient system, the
applications would coordinate internally and with each
other. System administrators would not need to set knobs
to control memory usage on either the high-end or the low-
end. Again, this broader goal comes from the fact that
database software will be interacting with other end-user
and system software.

4.3 Lessons Learned
Even if some tuning decisions, such as re-configuring an
entire system are not completely automated, it is of great
value to have observation and prediction components in
the spirit of self-tuning. Alerting a system administrator
about increasing load or significant changes in workload
patterns as early as possible can often save days of
unacceptable performance degradation.

In addition, automatically narrowing down the possible
bottlenecks and recommending appropriate remedies can
drastically simplify the administrator‟s job.

Universal database systems grew out of the belief that
database is the center of the universe and therefore the
framework for integration. This is far from true in today‟s
world. Once we are liberated and can accept the fact that
the database is a very important, component in the IT
world, programmability and integration of database
components with applications becomes a priority. In such
a world, we need to build RISC-style data management
components that have predictable performance and can
be auto-tuned

5. REFERENCES

[1] Elnaffar, S.; Powley, W.; Benoit, D.; Martin, P.
Today's DBMSs: how autonomic are they. Proceedings of
the 14

th
 International Workshop on Database and Expert

Systems Applications (DEXA‟03), 1-5 Sept. 2003 IEEE,
Pages: 651 – 655

[2] Weikum, G.; Moenkeberg, A.; Hasse, C. Zabback.
Selftuning database technology and information services:

Journal of Advances in Science and Technology

Vol. II, Issue II, November-2011, ISSN 2230-9659

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

from wishful thinking to viable engineering. Proceedings of
the 28th International Conference on Very Large Data
Bases, 20-23 Aug. 2002, Hong Kong, China.

[3] Chaudhuri, S.; Weikum, G. Rethinking Database
System Architecture: Towards a Self-tuning RISC-style
Database System. Proceedings of the 26th International
Conference on Very Large Databases, Cairo, Egypt, 2000

[4] Peter Spiro. Ubiquitous, Self-tuning, Scalable
Servers. SIGMOD „98 Seattle, WA, USA 1996 ACM

[5] Yingping, H.; Xiaorong, X.; Madey, G. A self-
manageable infrastructure for supporting web-based
simulations. Proceedings of the 37th Annual Simulation
Symposium (ANSS‟04), IEEE 18-22 April 2004

[6] Lightstone, S.; Lohman, G.; Zilio, D. Toward
Autonomic Computing with DB2 Universal Database. ACM
SIGMOD Record, Volume 31 Issue 3, September 2002.

[7] Sullivan, D.; Seltzer, M.; Pfeffer, A. Using
Probabilistic Reasoning to Automate Software Tuning.
SIGMETRICS/Performance‟04, June 12-16, 2004, New
York, NY, USA. ACM 1-58113-873-3/04/0006.

[8] David Botzer and Opher Etzion, IEEE Computer.
Society. Self-Tuning of the Relationships among Rules‟
Components in Active Databases Systems. IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, VOL. 16, NO. 3, MARCH 2004.

[9] Scheuermann, P.; Weikum, G.; Zabback, P. Data
partitioning and load balancing in parallel disk systems.
The VLDB Journal (1998) 7: 48–66

