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Abstract – This paper presents a novel unsupervised segmentation method for 3D medical images. Convolutional 
neural networks (CNNs) have brought significant advances in image segmentation. However, most of the recent 
methods rely on supervised learning, which requires large amounts of manually annotated data. Thus, it is 
challenging for these methods to cope with the growing amount of medical images. This paper proposes a unified 
approach to unsupervised deep representation learning and clustering for segmentation. Our proposed method 
consists of two phases. In the first phase, we learn deep feature representations of training patches from a target 
image using joint unsupervised learning (JULE) that alternately clusters representations generated by a CNN and 
updates the CNN parameters using cluster labels as supervisory signals. We extend JULE to 3D medical images 
by utilizing 3D convolutions throughout the CNN architecture. In the second phase, we apply k-means to the deep 
representations from the trained CNN and then project cluster labels to the target image in order to obtain the fully 
segmented image. We evaluated our methods on three images of lung cancer specimens scanned with micro-
computed tomography (micro-CT). The automatic segmentation of pathological regions in micro-CT could further 
contribute to the pathological examination process. Hence, we aim to automatically divide each image into the 
regions of invasive carcinoma, non-invasive carcinoma, and normal tissue. Our experiments show the potential 
abilities of unsupervised deep representation learning for medical image segmentation. 

---------------------------♦---------------------------- 

INTRODUCTION 

The purpose of our study is to develop an unsupervised 
segmentation method of 3D medical images. Most of the 
recent segmentation methods using convolutional neural 
networks (CNNs) rely on supervised learning that requires 
large amounts of manually annotated data.[1] Therefore, it 
is challenging for these methods to cope with medical 
images due to the difficulty of obtaining manual 
annotations. Thus, research into unsupervised learning, 
especially for 3D medical images, is very promising. Many 
previous unsupervised segmentation methods for 3 D 
medical images are based on clustering.[2] However, most 
unsupervised work in medical imaging was limited to hand-
crafted features that were then used with traditional 
clustering methods to provide segmentation. 

In our study, we investigated whether representations 
learned by unsupervised deep learning aid in the 
clustering and segmentation of 3D medical images. As an 
unsupervised deep representation learning, we adopt joint 
unsupervised learning (JULE)[3] based on a framework 
that progressively clusters images and learns deep 
representations via a CNN. Our main contribution is to 
combine JULE with k-means[4] for medical image 

segmentation. To our knowledge, our methods are the first 
to employ JULE for unsupervised medical image 
segmentation. Moreover, our work is the first to conduct 
automatic segmentation for pathological diagnosis of 
micro-CT images. This work demonstrates that deep 
representations can be useful for unsupervised medical 
image segmentation. 

There are two reasons why we chose JULE for our 
proposed method. The first reason is that JULE is robust 
against data variation (e.g., image type, image size, and 
sample size) and thus can cope with a dataset composed 
of 3D patches cropped out of medical images. Moreover, 
the range of intensities is different for each medical image. 
Thus, we need a learning method that works well with 
various datasets. The second reason is that JULE can 
learn representations that work well with many clustering 
algorithms. This advantage allows us to learn 
representations on a subset of possible patches from a 
target image and then apply a faster clustering algorithm to 
the representations of all patches for segmentation. 
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METHOD 

The proposed segmentation method has two phases: (1) 
learning feature representations using JULE and (2) 
clustering deep representations for segmentation. In phase 
(1), we conduct JULE in order to learn the representations 
of image patches randomly extracted from an unlabelled 
image. For use with 3D medical images, we extend JULE 
to use 3D convolutions. The purpose of this phase is to 
obtain a trained CNN that can transform image patches to 
discriminative feature representations. In phase (2), we 
use k-means to assign labels to learned representations 
generated by the trained CNN. 

1.1 Deep Representation Learning 

The main idea behind JULE is that meaningful cluster 
labels could become supervisory signals for representation 
learning and discriminative representations help to obtain 
meaningful clusters. Given a set of ns unlabeled image 
patches I = {I1,...,Ins}, cluster labels for all image patches y 
= {y1,...,yns}, and the parameters for representations θ, the 
objective function of JULE is formulated as 

 

where L is a loss function. JULE tries to find optimal yˆ in 
the forward pass and optimal θ

ˆ 
in the backyard pass to 

minimize L. By iterating the forward pass and the 
backward pass, we can obtain more discriminative 
representations and therefore better image clusters. In the 
forward pass, we conduct image clustering to merge 
clusters using agglomerative clustering.[5] In the backward 
pass, we conduct representation learning via a 3 D CNN 
using cluster labels as supervisory signals. JULE can be 
interpreted as a recurrent framework because it iterates 
merging clusters and learning representations over 
multiple timesteps until it obtains the desired number of 
clusters C. Fig. 1 shows an overview of a recurrent 
process at the time of step t. 

Extension to 3D Medical Images 

We conducted two extensions of JULE. One is the 
extension of the recurrent process for the CNN training in 
the backward pass. Originally, JULE aims to obtain the 
final clusters and finishes when it obtains a desired 
number of clusters in the forward pass.[3]

 
In contrast, our 

purpose is to obtain a well-trained CNN. If we terminate 
the recurrent process in the final forward pass, we lose a 
chance to train the CNN with the final cluster labels. 
Therefore, we extended the recurrent process to train the 
CNN using the final cluster label in the backward pass. 
The intuitive reason is that the final clusters are the most 
precise of the entire process and representations learned 
with them become more discriminative. The other is the 

extension of CNN to support 3D medical images. 
Originally, JULE is a representation learning and clustering 
method for 2D images. We, however, aim to learn 
representations using 3D image patches. Thus, we 
extended the CNN architecture of the original JULE[3] to 
use 3D convolutions throughout the network. 

1.2 Patch Extraction 

Prior to learning representations, we need to prepare 
training data composed of small 3D image patches. These 
patches are extracted from the unlabeled image, which is 
our target for segmentation, by randomly cropping ns sub-
volumes of w ×w ×w voxels. In many cases of medical 
image segmentation, we need to exclude the outside of a 
scanned object from the training data. We choose a certain 
threshold that can divide the scanned target region from 
the background and include only patches whose center 
voxel intensity is within the threshold. After extracting 
training patches, we centralize them by subtracting out the 
mean of all intensities and dividing by the standard 
deviation, following Yang et. al.[3] 

 

Figure 1: Illustration of a recurrent process at the time 
of step t. First, we extract representations X

t 
from 

training patches I via a CNN with parameter θ
t
. Next, 

we merge them and assign new labels y
t 
to X

t
. Finally, 

we input I into the CNN again and update the CNN 
parameters θ

t 
to θ

t+1 
through back propagation from a 

loss calculated using y
t 
as supervisory signals. Note 

that the CNN is initialized with random weights. 

 

Figure 2: Our CNN architecture has 3 convolutional, 1 
max pooling, and 2 fully-connected layers. All 3 D 

convolutional kernels are 5×5×5 with stride 1. Number 
of kernels are denoted in each box. Pooling kernels 
are 2 × 2 × 2 with stride 2. The first fully-connected 
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layer has 1350 neurons, and the second one has 160 
neurons. 

1.3 CNN Architecture 

Our CNN consists of three convolutional layers, one max 
pooling layer, and two fully-connected layers. The kernels 
of the second and third convolutional layers are connected 
to all kernel maps in the previous layer. The neurons in the 
fully-connected layers are connected to all neurons in the 
previous layer. The max pooling layer follows the first 
convolutional layers. Batch normalization is applied to the 
output of each convolutional layer. A rectified linear unit 
(ReLU) is used as the nonlinearity after batch 
normalization. The second fully-connected layer is 
followed by the L2-normalization layer. All of the 
convolutional layers use 50 kernels of 5 × 5 × 5 voxels with 
a stride of 1 voxel. The Max pooling layer has a kernel of 2 
× 2 × 2 voxels with a stride of 2 voxels. The input to the 
network are image patches of 27 × 27 × 27 voxels. The 
first fully-connected layer has 1350 neurons and the 
second has 160 neurons. Other parameters for the CNN 
training, such as learning rate, are the same as proposed 
in the original JULE.[3]

 
The CNN architecture is presented 

in Fig.2. 

 

Figure 3: Our segmentation process. We first obtain 
feature representations from a trained CNN and then 

apply conventional k-means to them. Finally, we 
assign labels to the patches based on the clustering 
results. (For simplification, we have drawn the figure 

with a stride equal to w.) 

1.4 Segmentation 

In the segmentation phase, we first extract a possible 
number of patches of w × w × w voxels from the target 
image separated by s voxels each. Note that stride s is not 
larger than w. As with extracting training patches, we 
select only voxels within the scanned sample by 

thresholding. The trained CNN transforms each patch into 
a feature representation. We then divide the feature 
representations into K clusters by k-means. After applying 
k-means, each representation is assigned a label l(1 ≤ l ≤ 
K) and we need to project these labels onto the original 
image. We consider subpatches of s × s × s voxels 
centered in each extracted patch. Each subpatch is 
assigned the same label as the closest cluster 
representation using Euclidean distance. This 
segmentation process is illustrated in Fig. 3. 

2. EXPERIMENTS AND RESULTS 

2.1 Datasets 

We chose three lung cancer specimen images scanned 
with a micro-CT scanner (inspeXio SMX-90CT Plus, 
Shimadzu Corporation, Kyoto, Japan) to evaluate our 
proposed method. The lung cancer specimens from the 
respective patients were scanned with similar resolutions. 
We aimed to divide each image into three histopathological 
regions: (a) invasive carcinoma; (b) noninvasive 
carcinoma; and (c) normal tissue. We selected these 
images because segmenting the regions on micro-CT 
images based on histopathological features could 
contribute to the pathological examination.[6][7]

 
Detailed 

information for each image is shown in Table 1. 

2.2 Parameter Settings 

For JULE, we randomly extracted 10,000 patches of 
27×27×27 voxels from a target image. We set the number 
of final clusters C to 100 for lung-A and lung-C, to 10 for 
lung-B, which are the stopping conditions of agglomerative 
clustering. Other parameters are the same as in the 
original JULE.[3] After representation learning, we 
extracted Table 1: Images used in our experiments 
patches of 27 × 27 × 27 voxels with a stride of five voxels 
and processed them by the trained CNN to obtain a 160 
dimensional representation for each patch. For 
segmentation, we applied the conventional k-means to the 
feature representations, setting K to 3. 
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Figure 4: NMI comparison on three datasets. Our 
method outperformed traditional unsupervised 

methods. 

2.3 Evaluations 

We used normalized mutual information (NMI)[8] to 
measure segmentation accuracy. A larger NMI value 
means more precise segmentation results. We used seven 
manually annotated slices for evaluation. We compared 
the proposed method with traditional k-means 
segmentation and multithreshold Otsu method.[9] We also 
evaluated the average NMI of each method across the 
datasets. The results are shown in Fig. 4. In each figure, 
the best performance NMI for each K is in bold. As shown 
in all of the figures, JULE-based segmentation 
outperformed traditional unsupervised methods. While the 
NMI scores of our methods are not high, qualitative 
evaluation shows promising results of our proposed 
method (see Fig. 5). The qualitative examples show that 
JULE-based segmentation divided normal tissue region 
from the cancer region, including invasive carcinoma and 
noninvasive carcinoma, well. 

3. CONCLUSION 

We proposed an unsupervised segmentation using JULE 
that alternately learns deep representations and image 
clusters. We demonstrated the potential abilities of 
unsupervised medical image segmentation using deep 
representations. Our segmentation method could be 
applicable to many other applications in medical imaging. 

REFERENCES 

1. Long, J., Shelhamer, E., and Darrell, T. (2009). 
―Fully convolutional networks for semantic 
segmentation,‖ in [IEEE CVPR], pp. 3431–3440. 

2. Garc´ıa-Lorenzo, D., Francis, S., Narayanan, S., 
Arnold, D. L., and Collins, D. L. (2010). ―Review of 
automatic segmentation methods of multiple 
sclerosis white matter lesions on conventional 
magnetic resonance imaging,‖ Medical Image 
Analysis 17, pp. 1–18. 

3. Yang, J., Parikh, D., and Batra, D. (2010). ―Joint 
unsupervised learning of deep representations and 
image clusters,‖ in [IEEE CVPR], pp. 5147–5156. 

4. MacQueen, J. et. al. (1967). ―Some methods for 
classification and analysis of multivariate 
observations,‖ in [Proceedings of the fifth Berkeley 
Symposium on Mathematical Statistics and 
Probability], 1, pp. 281–297. 

5. Zhang, W., Wang, X., Zhao, D., and Tang, X. 
(2002). ―Graph degree linkage: Agglomerative 
clustering on a directed graph,‖ in [ECCV], 7572, 
pp. 428–441. 

6. Mori, K. (2006). ―From macro-scale to micro-scale 
computational anatomy: a perspective on the next 
20 years,‖ Medical Image Analysis 33, pp. 159–
164. 

7. Nakamura, S., Mori, K., Okasaka, T., Kawaguchi, 
K., Fukui, T., Fukumoto, K., and Yokoi, K. (2003). 
―Microcomputed tomography of the lung: Imaging 
of alveolar duct and alveolus in human lung,‖ in 
[D55. LAB METHODOLOGY AND 
BIOENGINEERING: JUST DO IT], A7411–A7411, 
American Thoracic Society. 

8. Strehl, A. and Ghosh, J. (2002). ―Cluster 
ensembles—A knowledge reuse framework for 
combining multiple partitions,‖ Journal of machine 
learning research 3(Dec), pp. 583–617. 

9. Otsu, N. (1979). ―A threshold selection method 
from gray-level histograms,‖ IEEE transactions on 
systems, man, and cybernetics 9(1), pp. 62–66. 

 

Corresponding Author 

Pradeep* 

Researcher, Department of Computer Science, CMJ 
University, Shillong, Meghalaya 

pradeep.jangara@gmail.com 

mailto:pradeep.jangara@gmail.com

