

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Role of Test Template in Collection of Data a Case
Study

Amit Singh1 Dr. Pardeep Goel2

1
Research Scholar, CMJ University, Shillong, Meghalaya

2
Associate Professor, Fatehabad, Haryana

Abstract: It offers little in the way of defining classes of input which we believe to have similar error- detecting ability. In fact,

the valid input space on its own is suitable only for deriving a suite of random tests, each a member of the valid input space.
Nevertheless, the valid input space is a useful template to define and has an important role to play in the framework. As
mentioned at the end of chapter 3, the valid input space of an operation must be the source of all specification-based tests for
the operation. This means that any test is an element of the valid input space. It also means that any test template must be a
subset of the valid input space. So, we can define a Z type for test templates for a certain operation, Op:

TT Op == p VIS Op

Note the subscripted use of the operation name. This is a practice we will adopt for the remainder of the thesis. This definition
defines TT Op to be the type of all test templates for Op.

Schemas vs sets: The significance of bindings It has already been noted that templates describe sets of test data and that Z
schemas are used to define templates. It may seem strange not to use sets to define templates. As mentioned in section 4.1,
defining test data for an operation involves assigning values to the input components (both state and parameter) of the
operation, that is, defining a binding between input component identifiers and values. Thus, a template intuitively defines a set
of bindings, which is exactly what a Z schema defines.

Key Word: Error detecting Ability, Operation, Assigning.

---------------------------♦----------------------------

INTRODUCTION

Despite the major limitation of testing that it can only show
the presence of errors and never their absence1, it will
always be a necessary verification technique. Lucid
arguments to this eject can be found in [Tan76]. The
community is also aware of the usefulness of formal
methods for specifying and designing software. The
accepted role of formal specifications in program
verifications as the basis for proofs of correctness and
rigorous transformation methodologies.

The central concept of the framework is the Test Template
(TT), which is the basic unit for defining data. The art of
designing test data is determining the particular aspects of
the implementation that are to be tested, and determining
the distinguishing characteristics of input data that test
these aspects. Once these classes of requirements are
defined, any actual input satisfying them is appropriate
test data. Most important is defining the classes of
requirements that test data must satisfy. A test template is

a formal statement of a constrained data space, and thus
can be a description of test data as input meeting certain
requirements. The key features of a test template are that
it is

 generic, i.e., it represents a class of input,

 abstract, i.e., it has the same level of
implementation detail as the specification,

 insatiable, i.e., there is some representation of a
single element of the defined class of input,

 derivable from a formal specification.

Test templates constrain important features of data
without placing unnecessary restrictions. That is, test
templates can be expressed by constraints over the input
variables defined in the specification. In this sense, test
templates define sets of bindings of input variables to
acceptable values. As with the various data spaces

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

discussed in chapter 3, we use Z schemas to model test
templates. For example,

A template b x ;y : N | x < y]

Defines a set of tests having two values, x and y, such
that x is less than y. This template can represent the input
for a single test case, though it defines an infinite set of
possible bindings. The point is that each binding satisfying
the template is an acceptable test input exercising the
requirements of the single test case. We stress that a test
template only defines sets of data. We use templates to
represent test data, but there is nothing intrinsic in their
definition that indicates they are defining test data for an
operation using some criteria. This is done to preserve
flexibility and structure in our framework. Later, we define
a hierarchy of test templates, and this is where the
connection between templates and test cases is made.

REVIEW OF LITERATURE

The most important element of testing is the actual tests
themselves, if for no other reason than they are the basis
of almost every other testing concern. Accordingly, by far
the most prominent use of formal methods in testing is for
the derivation and generation of comprehensive black box
test sets. The specification is an authoritative description
of functionality and is an obvious source for black-box
tests. The three different styles of formal specification
support different test derivation methods. The key
concepts of each approach are somewhat
complementary. However, we are considering testing
using informal specifications. Informal specifications Any
specification is useful in software testing, and most
specifications are informal, presented using natural
language and sometimes augmented with diagrams and
structure charts. Some work has been done on directly
using such specifications in testing.

These methods focus on identifying key elements in the
specification. The realization when considering deriving
tests from informal specifications is the size and
impreciseness of such specifications, along with (usually)
poor ability tolerate components of the specification.
Clearly, tool support is a major consideration. Ostrand et
al. [OSW86] describe a tool for managing specification-
based testing from informal specifications. The major
functions of the tool for to annotate parts of the
specification for record keeping purposes (for example,
highlighting functional units), and maintain relationships
between parts of the specification and any test information
derived from them. Category partitioning [OB88, BHO89]
is a more advanced method for natural language
specification-based testing. Specifications are analyses to
determine the various functional units. For each functional
unit, the relevant characteristics of the parameters and

environment objects are classed in categories. Then,
using experience, the tester decides significant choices of
input for the categories. This information is the basis of the
test suites. The strength of the method is the definition of a
test specification language, TSL, used in automatic
construction of test suites and test execution. This is
described in more detail in section 2.3.2. It is clear that
most of the effort in these approaches is extracting
information from informal specifications that is trivial to
extract from formal specifications. An example is the work
on category partitioning using Z specifications discussed
in the section on test derivation from model-based
specifications below.

MATERIAL AND METHOD

We see that test templates and valid input spaces have
similar definitions as bindings of input variables to
appropriate data values. Our definition of a test template is
deliberately flexible, and clearly the valid input space of an
operation is a test template for that operation. As a test
template, the valid input space of an operation is very
coarse. It offers little in the way of defining classes of input
which we believe to have similar error- detecting ability. In
fact, the valid input space on its own is suitable only for
deriving a suite of random tests, each a member of the
valid input space. Nevertheless, the valid input space is a
useful template to define and has an important role to play
in the framework. As mentioned at the end of chapter 3,
the valid input space of an operation must be the source of
all specification-based tests for the operation. This means
that any test is an element of the valid input space. It also
means that any test template must be a subset of the valid
input space. So, we can define a Z type for test templates
for a certain operation, Op:

TT Op == p VIS Op

Note the subscripted use of the operation name. This is a
practice we will adopt for the remainder of the thesis. This
definition defines TT Op to be the type of all test templates
for Op.

Schemas vs sets: The significance of bindings It has
already been noted that templates describe sets of test
data and that Z schemas are used to define templates. It
may seem strange not to use sets to define templates. As
mentioned in section 4.1, defining test data for an
operation involves assigning values to the input
components (both state and parameter) of the operation,
that is, defining a binding between input component
identifiers and values. Thus, a template intuitively defines
a set of bindings, which is exactly what a Z schema
defines. The set of bindings can be constrained by
predicates in the same way as sets are defined using set
comprehension. Schema types define generalized tuples,

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

where ordering of components is not significant, and
individual components can be referenced. Consider these
alternatives

Schema T [x ; y : N | x < y]

Set T = {x ;y : N | x < y}

Used as a template, Set T defines a set of ordered pairs,
where individual components cannot be referenced.
Schema T defines a set of bindings of values to the
identifiers x and y. If B were such a binding (B : Schema T
), then B :x and B :y reference the components of the
binding. The descriptive power of schemas fits the idea of
describing test data. What does using a schema to
represent a template mean? As a test template, Schema T
describes the set of test data consisting of two
components, x and y, both natural numbers, satisfying the
condition that x is less than y. Templates are, of course,
types in the Z notation. An instance of a template is a
particular binding of values to components, and
represents an actual test.

The particulars of the Z syntax and semantics raise two
points in the usage of schemas as test templates. These
do not restrict the use of templates, but must be made
clear. A useful concept in the framework is reasoning with
sets of templates, that is, sets of Z schemas. Both points
relate to this usage.

Bindings are described using the

notation from [Spi92]

Schema [x; y :] type : p | x : N ; y : N|

Schema Set ==Schema type : p(p | x :N; y :N)

S : Schema type : x :N; y :N

S Set: Schema Set type : p | x :N; y :N

SS : S Set type : x : N; y :N

Both Schema and S Set define sets of bindings, and
instances of each are as expected.

However, they are not exactly the same. Despite the
similarity, Schema is a Z schema, and S Set is only a set
of bindings. This means that operations of the schema
calculus cannot be applied to S Set : it is a set, not a
schema. In every other regard Schema and S Set are
identical. Instances of both are bindings (with no ordering
of elements and component reference). Because the
types of schemas and sets of bindings are so similar,
schemas can be used in set expressions. Set operations
require all sets in the expression to have the same
signature. The resulting type of a set expression involving
schemas is a set of bindings.

We use a structured approach to build a hierarchy of test
templates. Coarser templates are iteratively divided into
smaller templates using testing strategies. Test data
derivation is simplified by this structured approach
involving the systematic application of various testing
strategies.

Since all tests for an operation must be derived from the
operation's valid input space, the valid input space is the
starting point of a hierarchy. Once the valid input space of
the functional unit is determined, the next step is to
subdivide the valid input space into the desired subsets, or
partitions, called domains. Choice of domains is not
determined by the test template framework. Rather,
testing strategies and heuristics are used to subdivide the
valid input space. The goal is to derive domains which are
equivalence classes of error-detecting ability for the
function under test, and which cover the valid input space.
That is, the goal is to choose domains so that each
element of a domain has the same error-detecting ability.
Some, but not all, strategies assume every element of a
domain is equivalent to all the others for this purpose and
so only one need be chosen. However, this assumption is
often invalid. To preserve the flexibility to choose tests for
domains selectively, the domain derivation step is used
repeatedly, dividing domains into further sub-domains,
until the tester is satisfied that the domains represent
desired equivalence classes.

This derivation results in a collection of test templates,
related to each other by their derivation and the strategies
used in their derivation. We construct a graph where
nodes are templates and edges represent application of
testing strategies. The edges are directed from parent
templates to child templates. Typically, a template
hierarchy looks something like Figure 4.1. A hierarchy can
be considered as a tree of tests, with the valid input space
at the root. In fact, in the general case, a hierarchy is a
directed graph, because it is possible to derive the same
template using different strategies (and hence different
links in the graph). The significance of a template in the
hierarchy is that it can be used as the source of test data.
If it is too coarse for this, there should be sub-templates
derived representing finer divisions of the parent template.
The terminal nodes in a hierarchy represent the final input
classes. Some strategies do not advocate domain
partitioning (e.g., random testing), in which final tests are
derived directly from the valid input space. Some
partitioning strategies assume each member of a domain
is equivalent to all others, in which case only one level of
derivation is required. Some strategies may advocate
further subdividing of already derived templates. The
framework is merely a defining structure, and doesn't
enforce particular derivation approaches on the tester.
Figure 4.1 shows a common hierarchy structure.

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

The hierarchy of templates for each operation is a directed
graph. Notational, all elements of the hierarchy relating
directly to the particular operation or functional unit under
test are subscripted with the operation's name. All
templates in the hierarchy are sub-schemas of the valid
input space. The hierarchy shows the derivation structure
of the templates as a relationship between sets of
templates derived from some other template using some
testing strategy. The generic set of strategies is introduced
and deliberately left abstract:

[STRATEGY]

The Test Template Hierarchy (TTH) graph for an
operation is a set of mappings from parent
template/strategy tuples to the set of child templates
derived from the parent using the strategy:

TTH Op : TT Op x STRATEGYTT Op

Templates are defined in terms of their parents and
additional constraints. For example, a template, T 1,
derived from VIS Op with the additional constraint is
defined. If the strategy used in this derivation was strat,
then its position in the hierarchy can be described by

strat : STRATEGY T1 € TTH OP (VIS OP, strat)

If T 1 is the only template derived from the valid input
space using strat, then this section of the hierarchy can be
completely defined by

{(T 1)} = TTH OP (VIS OP,strat)

Useful relationships among templates, based on the
structure of the hierarchy, can be defined. We define two
standard functions over templates in a hierarchy: children

op and descendants op .

Children Op : TT op  P (TT op)

Children op = ( T : TT op {s: STRATEGY TTH op (T ; s
)})

Descendants op : TT op(TT op)

Descendants op = (T : TT op) The function children op
determines the set of templates directly derived from
some template using any strategy. For example, given the
hierarchy in figure 4.1

 childrenFig1 (VIS) = {Ta1,..,T am ,..,Tb1 ,..,T bn}

The function descendant op determines the set of
templates directly or indirectly derived from some template
using any strategy. That is, the descendant templates
from some template are all the templates in the sub-graph

extending from that template. For example, given the
hierarchy in figure 4.1

descendantsFig1 (VIS) ={Ta1,.., T am ,..,T b1 ,..,T bn,

Tc1,..,Tco,.., Td1 ,..,T dp ,..,Te1T,..,eq ,..,T f1 ,..,T fr}

After applying all the desired strategies to derive test
templates, the template hierarchy is considered complete.
Instances of the templates in the hierarchy represent test
data. If no further subdivision of templates is to be
undertaken, each instance of a terminal template in the
hierarchy graph is considered equivalent to all other
instances of this template for testing purposes. For a
complete description of the test data, the only remaining
task is to instantiate the terminal templates in the
hierarchy. There are two ways to view the instantiation of
templates. Before discussing these, however, it must be
noted that an instance of a template is a precisely defined
object, but it is still abstract. That is, it exists at the same
level of abstraction as the templates. An instance of a
template will most likely not serve as final test data
because it probably has some data reification to undergo.
For example, suppose one input class identified by a test
template for queue operations involves a two element
queue (of natural numbers, say) with duplicate elements.
In Z, the queue would be represented by a sequence, so
this template would be

QT1=[q : seq N | # q = 2 ^ #(ran q) = 1]

Any instances of this template expressed in Z describe
specific Z sequences (e.g., h1; 1), but if the final
implementation refined the sequence representation of the
queue to a linked list, the instances of templates would
also have to be refined to suitable linked list equivalents.
The most straightforward way to describe instances of
templates is to use schema instantiation. If QT 1 is a
template, then

 Q : QT 1

is an instance of the template it is (abstract) test data.
This form of instantiation is no more useful than the
original template because no new information is
presented.

Constraints can be defined on instances, so this approach
could be used to describe the test datum mentioned
above:

 Q : QT 1

 Q : q = (1, 1)

CONCLUSION

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

The first point is one of Z syntax. Schemas are Z types.
Defining objects with schema types (bindings) has the
syntax inst: Schema. However, this is a short hand for the
syntax inst: {Schema}, which states that inst: is a member
of the set of bindings defined by Schema. Because of this
shorthand, a singleton set of schemas, containing only
schema S, can not be declared {S}, since this is merely
the schema type set of all bindings defined by S ." Rather
the singleton set is placed in parenthesis to
unambiguously describe the correct set: {(S)}. Non-
singleton sets of templates can be defined normally, since
there is no ambiguity.

There is a subtle difference between schemas and
schema types in Z, best illustrated with an example.
Consider the following definitions with the type of the
defined entity shown at its side.

The preferred approach to describing instances is to
define instance templates. These are merely templates
(schemas) with only one possible instantiation. This
approach is more attractive in three ways. Firstly, it
presents more information, as in the second example of
using schema instantiation above. Secondly, uniform use
of schemas and templates is made in the hierarchy, which
is important when we consider making general
expressions about all templates in a hierarchy. Thirdly,
some templates derived using strategies may have only
one instantiation so, again, the uniformity of the model is
preserved. The instance template corresponding to the
instance of QT 1 described above is simply defined as

 Q =[QT 1 | q = (1,1)]

Again, the final translation of instance templates to
concrete test data is implementation dependent. Instance
templates are incorporated into the hierarchy. The
strategy to derive instance templates is assumed in the
framework: instantiation : STRATEGY

REFERENCES

1. Ken Arnold, Bryan O’Sullivan, Robert W.
Scheifler, Jim Waldo, and Ann Wollrath. The Jini
Specification. Addison-Wesley, Inc., Reading, MA,

1999.

2. M. Balcer, W. Hasling, and T. Ostrand. Automatic
generation of test scripts from formal test
specifications. In Proceedings of the ACM
SIGSOFT Third Symposium on Software Testing,
Analysis, and Verification, pages 210–218. ACM
Press, 1989.

3. T. Ball. The limit of control flow analysis for
regression test selection. In Proceedings of the

International Symposium on Software Testing and
Analysis, pages 134–142. ACM Press, March

1998.

4. Kent Beck. Smalltalk Best Practice Patterns.

Prentice Hall, 1997.

5. Boris Beizer. Software Testing Techniques. Van

Nostrong Reinhold, New York, NY, 1990.

6. Robert V. Binder. Testing Object-Oriented
Systems: Models, Patterns, and Tools. Addison-

Wesley, Boston, MA, 1999.

7. R. Biyani and P. Santhanam. TOFU: Test
optimizer for functional usage. Software
Engineering Technical Brief, 2(1),1997.

8. Jonathan P. Bowen and Michael G. Hinchley. Ten
commandments of formal methods. IEEE
Computer, 28(4):56–63, April 1995.

9. Bill Brykczynski. A survey of software inspection
checklists. ACM SIGSOFT Software Engineering
Notes, 24(1):82 1999.

10. T.A. Budd. Mutation Analysis of Program Test
Data. PhD thesis, Department of Computer

Science, Yale University, New Haven, CT, 1980.

