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Abstract:  It offers little in the way of defining classes of input which we believe to have similar error- detecting ability. In fact, 

the valid input space on its own is suitable only for deriving a suite of random tests, each a member of the valid input space. 
Nevertheless, the valid input space is a useful template to define and has an important role to play in the framework. As 
mentioned at the end of chapter 3, the valid input space of an operation must be the source of all specification-based tests for 
the operation. This means that any test is an element of the valid input space. It also means that any test template must be a 
subset of the valid input space. So, we can define a Z type for test templates for a certain operation, Op: 

TT Op == p VIS Op 

Note the subscripted use of the operation name. This is a practice we will adopt for the remainder of the thesis. This definition 
defines TT Op to be the type of all test templates for Op. 

Schemas vs sets: The significance of bindings It has already been noted that templates describe sets of test data and that Z 
schemas are used to define templates. It may seem strange not to use sets to define templates. As mentioned in section 4.1, 
defining test data for an operation involves assigning values to the input components (both state and parameter) of the 
operation, that is, defining a binding between input component identifiers and values. Thus, a template intuitively defines a set 
of bindings, which is exactly what a Z schema defines. 
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INTRODUCTION 

Despite the major limitation of testing that it can only show 
the presence of errors and never their absence1, it will 
always be a necessary verification technique. Lucid 
arguments to this eject can be found in [Tan76]. The 
community is also aware of the usefulness of formal 
methods for specifying and designing software. The 
accepted role of formal specifications in program 
verifications as the basis for proofs of correctness and 
rigorous transformation methodologies. 

The central concept of the framework is the Test Template 
(TT), which is the basic unit for defining data. The art of 
designing test data is determining the particular aspects of 
the implementation that are to be tested, and determining 
the distinguishing characteristics of input data that test 
these aspects. Once these classes of requirements are 
defined, any actual input satisfying them is appropriate 
test data. Most important is defining the classes of 
requirements that test data must satisfy. A test template is 

a formal statement of a constrained data space, and thus 
can be a description of test data as input meeting certain 
requirements. The key features of a test template are that 
it is  

 generic, i.e., it represents a class of input,  

 abstract, i.e., it has the same level of 
implementation detail as the specification, 

 insatiable, i.e., there is some representation of a 
single element of the defined class of input,  

 derivable from a formal specification.  

Test templates constrain important features of data 
without placing unnecessary restrictions. That is, test 
templates can be expressed by constraints over the input 
variables defined in the specification. In this sense, test 
templates define sets of bindings of input variables to 
acceptable values. As with the various data spaces 
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discussed in chapter 3, we use Z schemas to model test 
templates. For example,  

A template b x ;y : N | x < y]  

Defines a set of tests having two values, x and y, such 
that x is less than y. This template can represent the input 
for a single test case, though it defines an infinite set of 
possible bindings. The point is that each binding satisfying 
the template is an acceptable test input exercising the 
requirements of the single test case. We stress that a test 
template only defines sets of data. We use templates to 
represent test data, but there is nothing intrinsic in their 
definition that indicates they are defining test data for an 
operation using some criteria. This is done to preserve 
flexibility and structure in our framework. Later, we define 
a hierarchy of test templates, and this is where the 
connection between templates and test cases is made. 

REVIEW OF LITERATURE  

The most important element of testing is the actual tests 
themselves, if for no other reason than they are the basis 
of almost every other testing concern. Accordingly, by far 
the most prominent use of formal methods in testing is for 
the derivation and generation of comprehensive black box 
test sets. The specification is an authoritative description 
of functionality and is an obvious source for black-box 
tests. The three different styles of formal specification 
support different test derivation methods. The key 
concepts of each approach are somewhat 
complementary. However, we are considering testing 
using informal specifications. Informal specifications Any 
specification is useful in software testing, and most 
specifications are informal, presented using natural 
language and sometimes augmented with diagrams and 
structure charts. Some work has been done on directly 
using such specifications in testing.  

These methods focus on identifying key elements in the 
specification. The realization when considering deriving 
tests from informal specifications is the size and 
impreciseness of such specifications, along with (usually) 
poor ability tolerate components of the specification. 
Clearly, tool support is a major consideration. Ostrand et 
al. [OSW86] describe a tool for managing specification-
based testing from informal specifications. The major 
functions of the tool for to annotate parts of the 
specification for record keeping purposes (for example, 
highlighting functional units), and maintain relationships 
between parts of the specification and any test information 
derived from them. Category partitioning [OB88, BHO89] 
is a more advanced method for natural language 
specification-based testing. Specifications are analyses to 
determine the various functional units. For each functional 
unit, the relevant characteristics of the parameters and 

environment objects are classed in categories. Then, 
using experience, the tester decides significant choices of 
input for the categories. This information is the basis of the 
test suites. The strength of the method is the definition of a 
test specification language, TSL, used in automatic 
construction of test suites and test execution. This is 
described in more detail in section 2.3.2. It is clear that 
most of the effort in these approaches is extracting 
information from informal specifications that is trivial to 
extract from formal specifications. An example is the work 
on category partitioning using Z specifications discussed 
in the section on test derivation from model-based 
specifications below. 

MATERIAL AND METHOD 

We see that test templates and valid input spaces have 
similar definitions as bindings of input variables to 
appropriate data values. Our definition of a test template is 
deliberately flexible, and clearly the valid input space of an 
operation is a test template for that operation. As a test 
template, the valid input space of an operation is very 
coarse. It offers little in the way of defining classes of input 
which we believe to have similar error- detecting ability. In 
fact, the valid input space on its own is suitable only for 
deriving a suite of random tests, each a member of the 
valid input space. Nevertheless, the valid input space is a 
useful template to define and has an important role to play 
in the framework. As mentioned at the end of chapter 3, 
the valid input space of an operation must be the source of 
all specification-based tests for the operation. This means 
that any test is an element of the valid input space. It also 
means that any test template must be a subset of the valid 
input space. So, we can define a Z type for test templates 
for a certain operation, Op: 

TT Op == p VIS Op 

Note the subscripted use of the operation name. This is a 
practice we will adopt for the remainder of the thesis. This 
definition defines TT Op to be the type of all test templates 
for Op. 

Schemas vs sets: The significance of bindings It has 
already been noted that templates describe sets of test 
data and that Z schemas are used to define templates. It 
may seem strange not to use sets to define templates. As 
mentioned in section 4.1, defining test data for an 
operation involves assigning values to the input 
components (both state and parameter) of the operation, 
that is, defining a binding between input component 
identifiers and values. Thus, a template intuitively defines 
a set of bindings, which is exactly what a Z schema 
defines. The set of bindings can be constrained by 
predicates in the same way as sets are defined using set 
comprehension. Schema types define generalized tuples, 
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where ordering of components is not significant, and 
individual components can be referenced. Consider these 
alternatives 

Schema T [x ; y : N | x < y] 

Set T = {x ;y : N | x < y} 

Used as a template, Set T defines a set of ordered pairs, 
where individual components cannot be referenced. 
Schema T defines a set of bindings of values to the 
identifiers x and y. If B were such a binding (B : Schema T 
), then B :x and B :y reference the components of the 
binding. The descriptive power of schemas fits the idea of 
describing test data. What does using a schema to 
represent a template mean? As a test template, Schema T 
describes the set of test data consisting of two 
components, x and y, both natural numbers, satisfying the 
condition that x is less than y. Templates are, of course, 
types in the Z notation. An instance of a template is a 
particular binding of values to components, and 
represents an actual test. 

The particulars of the Z syntax and semantics raise two 
points in the usage of schemas as test templates. These 
do not restrict the use of templates, but must be made 
clear. A useful concept in the framework is reasoning with 
sets of templates, that is, sets of Z schemas. Both points 
relate to this usage. 

Bindings are described using the
 
notation from [Spi92] 

Schema [x; y :]            type : p | x : N ; y : N| 

Schema Set ==Schema         type : p(p | x :N; y :N) 

S     : Schema                         type : x :N; y :N 

S Set: Schema Set                  type : p | x :N; y :N 

SS    : S Set                             type : x : N; y :N 

Both Schema and S Set define sets of bindings, and 
instances of each are as expected. 

However, they are not exactly the same. Despite the 
similarity, Schema is a Z schema, and S Set is only a set 
of bindings. This means that operations of the schema 
calculus cannot be applied to S Set : it is a set, not a 
schema. In every other regard Schema and S Set are 
identical. Instances of both are bindings (with no ordering 
of elements and component reference). Because the 
types of schemas and sets of bindings are so similar, 
schemas can be used in set expressions. Set operations 
require all sets in the expression to have the same 
signature. The resulting type of a set expression involving 
schemas is a set of bindings. 

We use a structured approach to build a hierarchy of test 
templates. Coarser templates are iteratively divided into 
smaller templates using testing strategies. Test data 
derivation is simplified by this structured approach 
involving the systematic application of various testing 
strategies.  

Since all tests for an operation must be derived from the 
operation's valid input space, the valid input space is the 
starting point of a hierarchy. Once the valid input space of 
the functional unit is determined, the next step is to 
subdivide the valid input space into the desired subsets, or 
partitions, called domains. Choice of domains is not 
determined by the test template framework. Rather, 
testing strategies and heuristics are used to subdivide the 
valid input space. The goal is to derive domains which are 
equivalence classes of error-detecting ability for the 
function under test, and which cover the valid input space. 
That is, the goal is to choose domains so that each 
element of a domain has the same error-detecting ability. 
Some, but not all, strategies assume every element of a 
domain is equivalent to all the others for this purpose and 
so only one need be chosen. However, this assumption is 
often invalid. To preserve the flexibility to choose tests for 
domains selectively, the domain derivation step is used 
repeatedly, dividing domains into further sub-domains, 
until the tester is satisfied that the domains represent 
desired equivalence classes.  

This derivation results in a collection of test templates, 
related to each other by their derivation and the strategies 
used in their derivation. We construct a graph where 
nodes are templates and edges represent application of 
testing strategies. The edges are directed from parent 
templates to child templates. Typically, a template 
hierarchy looks something like Figure 4.1. A hierarchy can 
be considered as a tree of tests, with the valid input space 
at the root. In fact, in the general case, a hierarchy is a 
directed graph, because it is possible to derive the same 
template using different strategies (and hence different 
links in the graph). The significance of a template in the 
hierarchy is that it can be used as the source of test data. 
If it is too coarse for this, there should be sub-templates 
derived representing finer divisions of the parent template. 
The terminal nodes in a hierarchy represent the final input 
classes. Some strategies do not advocate domain 
partitioning (e.g., random testing), in which final tests are 
derived directly from the valid input space. Some 
partitioning strategies assume each member of a domain 
is equivalent to all others, in which case only one level of 
derivation is required. Some strategies may advocate 
further subdividing of already derived templates. The 
framework is merely a defining structure, and doesn't 
enforce particular derivation approaches on the tester. 
Figure 4.1 shows a common hierarchy structure. 
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The hierarchy of templates for each operation is a directed 
graph. Notational, all elements of the hierarchy relating 
directly to the particular operation or functional unit under 
test are subscripted with the operation's name. All 
templates in the hierarchy are sub-schemas of the valid 
input space. The hierarchy shows the derivation structure 
of the templates as a relationship between sets of 
templates derived from some other template using some 
testing strategy. The generic set of strategies is introduced 
and deliberately left abstract: 

[STRATEGY ] 

The Test Template Hierarchy (TTH) graph for an 
operation is a set of mappings from parent 
template/strategy tuples to the set of child templates 
derived from the parent using the strategy: 

TTH Op : TT Op x STRATEGYTT Op 

Templates are defined in terms of their parents and 
additional constraints. For example, a template, T 1, 
derived from VIS Op with the additional constraint is 
defined. If the strategy used in this derivation was strat, 
then its position in the hierarchy can be described by 

strat : STRATEGY T1 € TTH OP (VIS OP, strat) 

If T 1 is the only template derived from the valid input 
space using strat, then this section of the hierarchy can be 
completely defined by 

{(T 1)} = TTH OP (VIS OP,strat ) 

Useful relationships among templates, based on the 
structure of the hierarchy, can be defined. We define two 
standard functions over templates in a hierarchy: children 

op and descendants op . 

Children Op : TT op  P (TT op ) 

Children op = ( T : TT op {s: STRATEGY TTH op (T ; s 
)}) 

Descendants op : TT op(TT op) 

Descendants op = (T : TT op)    The function children op 
determines the set of templates directly derived from 
some template using any strategy. For example, given the 
hierarchy in figure 4.1 

     childrenFig1 (VIS) = {Ta1,..,T am ,..,Tb1 ,..,T bn} 

The function descendant op determines the set of 
templates directly or indirectly derived from some template 
using any strategy. That is, the descendant templates 
from some template are all the templates in the sub-graph 

extending from that template. For example, given the 
hierarchy in figure 4.1 

descendantsFig1 (VIS) ={Ta1,.., T am ,..,T b1 ,..,T bn, 

Tc1,..,Tco,.., Td1 ,..,T dp ,..,Te1T,..,eq ,..,T f1 ,..,T fr} 

After applying all the desired strategies to derive test 
templates, the template hierarchy is considered complete. 
Instances of the templates in the hierarchy represent test 
data. If no further subdivision of templates is to be 
undertaken, each instance of a terminal template in the 
hierarchy graph is considered equivalent to all other 
instances of this template for testing purposes. For a 
complete description of the test data, the only remaining 
task is to instantiate the terminal templates in the 
hierarchy. There are two ways to view the instantiation of 
templates. Before discussing these, however, it must be 
noted that an instance of a template is a precisely defined 
object, but it is still abstract. That is, it exists at the same 
level of abstraction as the templates. An instance of a 
template will most likely not serve as final test data 
because it probably has some data reification to undergo. 
For example, suppose one input class identified by a test 
template for queue operations involves a two element 
queue (of natural numbers, say) with duplicate elements. 
In Z, the queue would be represented by a sequence, so 
this template would be 

QT1=[q : seq N | # q = 2 ^ #(ran q) = 1] 

Any instances of this template expressed in Z describe 
specific Z sequences (e.g., h1; 1 ), but if the final 
implementation refined the sequence representation of the 
queue to a linked list, the instances of templates would 
also have to be refined to suitable linked list equivalents. 
The most straightforward way to describe instances of 
templates is to use schema instantiation. If QT 1 is a 
template, then 

                Q : QT 1 

is an instance of the template  it is (abstract) test data. 
This form of instantiation is no more useful than the 
original template because no new information is 
presented. 

Constraints can be defined on instances, so this approach 
could be used to describe the test datum mentioned 
above: 

                 Q : QT 1 

                  Q : q = (1, 1) 

CONCLUSION 
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The first point is one of Z syntax. Schemas are Z types. 
Defining objects with schema types (bindings) has the 
syntax inst: Schema. However, this is a short hand for the 
syntax inst: {Schema}, which states that inst: is a member 
of the set of bindings defined by Schema. Because of this 
shorthand, a singleton set of schemas, containing only 
schema S,  can not be declared {S}, since this is merely 
the schema type  set of all bindings defined by S ." Rather 
the singleton set is placed in parenthesis to 
unambiguously describe the correct set:  {(S)}. Non-
singleton sets of templates can be defined normally, since 
there is no ambiguity.  

There is a subtle difference between schemas and 
schema types in Z, best illustrated with an example. 
Consider the following definitions with the type of the 
defined entity shown at its side. 

The preferred approach to describing instances is to 
define instance templates. These are merely templates 
(schemas) with only one possible instantiation. This 
approach is more attractive in three ways. Firstly, it 
presents more information, as in the second example of 
using schema instantiation above. Secondly, uniform use 
of schemas and templates is made in the hierarchy, which 
is important when we consider making general 
expressions about all templates in a hierarchy. Thirdly, 
some templates derived using strategies may have only 
one instantiation so, again, the uniformity of the model is 
preserved. The instance template corresponding to the 
instance of QT 1 described above is simply defined as 

                      Q =[QT 1 | q = (1,1) ] 

Again, the final translation of instance templates to 
concrete test data is implementation dependent. Instance 
templates are incorporated into the hierarchy. The  
strategy to derive instance templates is assumed in the 
framework: instantiation : STRATEGY 
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