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Abstract:  Smart Messages (SMs) are migratory execution units used to describe distributed computations over mobile adhoc 

networks of embedded systems. The main benefits provided by SMs are flexibility, scalability, and the ability to perform 
distributed computations over networks composed of heterogeneous, resource constrained, unattended embedded systems. A 
key challenge that confronts SMs, however, is how to define a security architecture that protects both the SMs and the hosts, 
while preserving the SM benefits. 

In this paper, we present a basic SM security architecture which sets up a framework for the security related issues of SMs and 
provides solutions for authentication, authorization, and secure SM migration. Since this paper is the first attempt to 
investigate the unique security challenges posed by a system based on mobile code executed over mobile ad hoc networks, 
we also discuss the main issues that remain to be solved for a more comprehensive SM security architecture.    

---------------------------♦---------------------------- 

1. INTRODUCTION 

Programming user-defined distributed applications for 
large scale, ad hoc networks of embedded systems (NES) 
poses a significant challenge due to the unique 
characteristics exhibited by these networks. We envision 
future NES composed of a large number of 
heterogeneous, resource constrained systems, which are 
able to communicate Through wireless interfaces. These 
nodes can bemobile, can fail at any moment, or can even 
be disposable. Therefore, NES will be formed ad hoc and 
their resources will be unknown a priori. Sensor networks 
[13, 11] have represented the first step toward this vision, 
but we expect to encounter such networks in any aspect 
of our daily routine (e.g., home appliances communicating 
to each other, cars cooperating to adapt to traffic 
conditions, intelligent cameras performing object tracking 
over large areas). 

Recently, we have proposed cooperative computing [5] as 
a new distributed programming model for large scale, ad 
hocNES. Applications developed under thismodel are 
composed of cooperative Smart Messages (SMs). SMs 
are collections of code and data that migrate through the 
network, one hop at a time, executing at each node. 
Nodes in the network support SMs by providing a virtual 
machine and a name-based memory region, called Tag 
Space. The applications need to execute on target nodes 
named by their content, and in doing so they migrate to 
nodes of interest using application controlled routing 
executed at intermediate nodes. 

SMs’ design has been influenced by a variety of other 
research efforts, particularly mobile agents for IP-style 
networks [14, 9, 19]. We leverage the general idea of code 
migration, but we focus more on flexibility, scalability, re-
programmability, and the ability to perform distributed 
computing for unattended NES. Section 6 describes the 
similarities and differences between SMs and mobile 
agents in more details. 

This paper addresses a key challenge that confronts SMs: 
how to define a security architecture, while preserving the 
flexibility offered by SMs and avoiding a drastic 
degradation of performance. Although the security for both 
mobile agents [10, 15] and ad hoc networks [22, 12] have 
been extensively studied, this is the first attempt (to the 
best of our knowledge) to investigate the security issues 
for a system based on code migration over mobile ad hoc 
networks. 

Given the complexity of the problem, our intentions are 
threefold: identify the unique challenges faced by such a 
system, design an extensible framework for SM security 
which provides solutions for the basic, but critical SM 
security requirements, and present the open issues that 
remain to be solved. 

Similar to mobile agents, there are three main issues that 
have to be solved: (1) protecting recipient hosts from SMs, 
(2) protecting SMs from each other, and (3) protecting 
SMs from malicious hosts. These problems become more 
severe for SMs due to the volatile nature of their target 
networks. 
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Unlike traditional mobile agents for relatively stable IP-
based networks, the SMs have to overcome the lack of an 
infrastructure or a central authority, specific to mobile ad 
hoc networks, which increases significantly the difficulty of 
key authentication and group management. 

Additionally, SMs have a number of unique features that 
influence the design of a security architecture. First, SMs 
have a unified data model (the Tag Space) which provides 
a single point of access to systemresources. Second, no 
direct communication is allowed among SMs, and the only 
communication channel is through the shared Tag Space. 
Third, the SM execution is non-preemptive. And fourth, 
end-to end encryption is not possible for all components of 
an SM since an SM has to execute at each hop in the path 
(i.e., it has to execute at least the routing). 

The rest of this paper is organized as follows. We start by 
providing an SM overview in Section 2. Section 3 presents 
the security challenges faced by SMs. In Section 4, we 
describe a basic security architecture for SMs, while 
Section 5 discusses the open issues and future work. 
Related work is presented in Section 6, and the paper 
concludes in Section 7. 

2. BASIC SECURITY ARCHITECTURE 

In this section, we present a basic security architecture for 
SMs, which does not intend to overcome all challenges 
and come up with a complete solution. Instead, it sets up 
an extensible framework and provides lightweight 
safeguards to support basic, but critical security 
requirements of cooperative computing using SMs. 
Specifically, this basic architecture addresses the first two 
challenges discussed in the previous section (i.e., we do 
not address the protection of SMs against malicious hosts, 
except for eavesdropping). Next section will cover some of 
the open issues and will provide an insight into possible 
solutions for them. 

2.1. ASSUMPTIONS 

We assume that a key exchange mechanism is available. 
Secure key exchange over ad-hoc networks is an active 
research topic by itself [3, 21, 22], and although very 
challenging, it is outside the scope of this paper. A simple 
solution for medium-scale networks is through an off-band 
channel. 

We further assume that each node carries a public-private 
key pair, and that digital signature based authentication 
can be implemented. Additionally, each node uses the 
same one way hash function, and each code brick of an 
SM is identified by its hash value (i.e., the value returned 
by applying the hash function stored at each node on the 
code itself). 

Finally, since our virtual machine for SM execution is an 
extension of Sun’s Java KVM, we rely on Java language 
to provide both type safety (i.e., strong type checking) and 
memory safety (i.e., forge-proof pointers). 

 

Figure 2. Tag Structure 

2.2. SMART MESSAGES IDENTITY 

The ID of an SM is a unique number, which consists of the 
ID of the originator node (OGID) and a timestamp. Since 
an SM can migrate on it sown and create or spawn new 
SMs at intermediate nodes, its family information might be 
needed for access control to the Tag Space. A family of 
SMs is defined as all SMs generated from the same SM, 
called ancestor of the family (i.e., the code bricks carried 
by a child SM represent a subset of its parent’s code 
bricks). Therefore, each SM carries its ancestor ID (AID). 
In addition, an SM carries a list of the hash values for all 
its code bricks, which are used for more flexible access 
control to the Tag Space. For instance, some routing tags 
may be accessible to all SMs using the same routing brick. 
Such an access policy can easily be verified using the 
brick level hashes. Also, these hashes serve as indexes, 
during migrations, to retrieve only the code bricks that are 
not cached locally. Once all this information needed for 
authentication and access control is generated, the sender 
host digitally signs it. 

2.3. AUTHENTICATION 

Before any SM migration, the sender host authenticates 
the recipient host (i.e., verifies if the recipient is trusted or 
not). The ID, AID, and hash list of the SM are encrypted 
using sender’s private key and decrypted by the recipient 
with sender’s public key. The SM’s code, data, and 
execution state might be encrypted with the recipient’s 
public key and decrypted at destination with the private 
key. This solution, however, can be computationally 
expensive because the SM has to be encrypted/decrypted 
at each node in the path toward a node of interest (i.e., 
SMs execute their routing at each node in the path). 
Therefore, Section 5 discusses an approach that allows an 
SM to pass through the intermediate nodes in an 
encrypted form (except for its routing and execution state) 
and be decrypted only at the node of interest. 
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Upon receiving an incoming SM, the recipient host checks 
if the digital signature is valid and made by a trusted party. 
Then, the integrity of the SM is verified using the list of 
hashes. If any code brick is detected to be modified, the 
SM is considered being tampered and thereby not trusted. 

2.4. ACCESS CONTROL 

A unique characteristic of SMs is that no direct access is 
allowed to system resources (i.e., the SMs access both 
their data and system resources through the Tag Space). 
The advantage of this design is that the Tag Space is a 
single point of access control, which can be implemented 
and enforced uniformly. Compared to other systems [10], 
it greatly simplifies the control mechanisms. As described 
in Section 2, there are two types of tags: I/O tags and 
application tags. It is the host’s responsibility to define 
policies to protect the I/O tags and the implementation is 
straightforward. The application tags are the only mean of 
communication and coordination among cooperative SMs. 
The SM creating the tag, called tag owner, determines the 
access control policy and delegates the host to enforce 
this policy on its behalf. Protecting the application tags 
ensures that SM executions do not interfere with each 
other, and therefore provides a secure channel for 
cooperation. Besides its name, lifetime, and data, a tag 
incorporates also the ID of its owner (OID), the ID of its 
owner’s ancestor (AID), and the ACL (access control list), 
as depicted in Figure 2. Upon creating a tag, the VM sets 
the OID field to the ID of the SM that created the tag. 
Then, the SM establishes the ACL, which is a matrix of 
subjects and their access permissions. 

Access permissions for tags are similar to those for Unix 
files including read(r) and write(w) (i.e., to execute a 
system call, a read or a write is performed on an I/O tag). 
The ACL contains five protection domains: Owner, Family, 
Origin, Code, and Others. The Owner and Others 
protection domains define the access permissions for the 
owner of the tag and for any SM, respectively. The group 
concept, defined as an arbitrary relation over SMs, 
supports more flexible cooperation, but also requires high 
overhead of managing the group membership on-the-fly. 
Currently, our architecture does not support dynamic 
cooperation among totally independent SMs (this issue is 
discussed in more details in Section 5). Instead, we define 
three protections domains that allow cooperation among 
well-defined groups of SMs (i.e., Family, Origin, Code). In 
the following, we present three scenarios that illustrate 
these protection domains. 

Family cooperation. In Figure 3, all cooperative SMs 

originate from a common SM ancestor. For instance, SM1 

 

Figure 3. Family Cooperation 

 

Figure 4. Single Originator Cooperation 

is created on No, migrates to Nc and creates a child, SM2, 
to help it discover a route. Once a route is discovered, 
SM1 needs permissions to access the tags created by 
SM2. Therefore, SM2 sets the ACL to fFamily, rwg (i.e., 
the AID of T is the same with the AID of SM1). 

SINGLE ORIGINATOR COOPERATION 

Figure 4 shows the scenario when the group of 
cooperative SMs originate from a common node. SM1 and 
SM2 are created on node No and migrate to target node 
Nt, via different paths. SM1 arrives at Nt before SM2 and 
creates a tag T. It also sets theACL as fOrigin, rwg such 
that SM2 will be able to access T (i.e., the unique IDs of 
SM1 and SM2 contain the same OGID). This scenario is 
very likely to be encountered since many nodes are small 
devices, such as PDAs or cell phones, owned by a single 
user. 

CODE-BASED COOPERATION 

In addition to the simple groups described before, the SM 
group cooperation can be coordinated more flexibly based 
on code bricks. To ensure cooperation among SMs that 
are aware of the code used for data sharing or data 
exchange, each tag has a list of associated hash values 
for certain code bricks. These hash values define the 
members of the Code group (they may or may not belong 
to the owner of the tag). By definition, an SM is a member 
of the Code group if the hash value of its currently 
executing code brick belongs to this list. For instance, SMs 
using the same routing brick can add the hash value 
corresponding to this brick to the tag’s list of hash values 
in order to facilitate route sharing among them. Figure 5 
presents such an example. SM1 creates a tag T and sets 
the ACL to fCode=(Cr), rwg to grant access to all the other 
SMs using the Cr routing brick. Hence, SM2 has the 
permissions to use T. Another example of code-based 
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cooperation is an SM producer-consumer application 
(independent SMs, created on different nodes, but aware 
of the code bricks that access the shared data) that 
attaches the hash values of the code bricks used to share 
data to certain tags of interest. 

 

Figure 5. Code-based Cooperation 

2.5. AUTHORIZATION 

Each time an SM tries to execute an operation on a tag, 
the VM performs the authorization process. Based on the 
credentials presented at authentication and the currently 
executing code brick, the SM is associated with at least 
one protection domain. The request is granted if the 
SMhas the necessary permission to access the tag in any 
of the protection domains it has been associated with. 

2.6. RESOURCE CONSUMPTION CONTROL 

To address the challenge posed by resource depletion at 
nodes and to ensure a simple resource management 
mechanism among competing SMs, we implement a 
contract based resource control mechanism. Each SM 
carries its resource requirement estimates in a resource 
table, which works as a resource contract between the 
recipient host and the message. As explained in Section 
2, the Admission Manager decides whether or not to 
accept the SM, and the VM enforces the contract. Since 
SM execution is non preemptive, once an SM is admitted, 
the recipient node guarantees that enough resources are 
available for its execution.  Additionally, the non-
preemptive execution avoids the potential problem of 
multiple SMs competing for resources. 

3. OPEN ISSUES AND FUTURE WORK 

Security of both mobile agents and ad-hoc networks is 
known to be difficult. The combination of the two makes 
the Solutions more elusive. Therefore, the SM security 
architecture is far from complete and leaves several open 
issues. 

A first issue is how to achieve key exchange and 
validation without a central authority. It is clear that the 
treelike trust which is the foundation of public key 
infrastructure [2] is not suitable for mobile ad-hoc 
environments. Instead, the web of trust as first described 

in PGP [8] seems more promising. Furthermore, to 
counter the potential vulnerability of having one malicious 
certificate authority subvert the whole system, fault-
tolerance [26] and voting protocols [18] can be applied. A 
main drawback of these methods is the overhead in terms 
of message costs. We plan to investigate solutions that 
include achieving asymmetric proper ties using symmetric 
cryptography [21], and combining ID based and threshold 
cryptography as suggested in [16]. 

Given the wireless nature of the underlying network, an 
SM has to be protected against eavesdropping. Since 
most of the time only the SM routing is executed (i.e., the 
rest of the code executes only on nodes of interest), there 
is no need to pay the cost of using hop-by-hop 
encryption/decryption for all code and data bricks. Amore 
efficient solution would be to allow the routing brick to 
encrypt all the other code and data bricks using a routing-
specific algorithm and a key generated based on the 
SMID. Upon arrival at a node of interest, the routing 
decrypts the SM using the same key. The routing code 
and data, as well as the execution state, are still encrypted 
with the next hop public key and decrypted with the private 
key at destination. 

As we mentioned in Section 3, there is no way for a host 
to predict on which hosts the SMs will be executed since 
SMs are autonomous on their way. The direct 
consequence is that it is hard to prevent an SM from being 
tampered by a malicious host by simply encrypting the 
message. Hardware solutions [1, 20] represent an option. 
The concern with this solution is the extra cost of the 
devices. Complete software solutions are not known yet, 
but code confusion and encryption techniques are 
investigated [7, 24] to achieve agent security. 

A significant issue that we plan to address is how to 
support arbitrary dynamic cooperation among totally 
independent SMs (i.e., a more flexible access control to 
the Tag Space is needed). The problem can be reduced to 
group membership management in ad-hoc networks. The 
current available protocols rely on either certificate [17] or 
distances [23], but they are constrained by the availability 
of a certificate authority and provide only limited flexibility 
for group description. 

Finally, the network as a whole has to be protected 
against malicious SMs that consume too many resources 
(e.g., an SM that loops forever through the network, but 
respects its resource contract at each node). We are 
currently investigating a market-based approach [10] 
where each SM acquires off-line or on-demand a number 
of tokens which are used ”to pay” for the resources 
consumed in the network. 

4. RELATED WORK 
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SMs are influenced by the design of mobile agents for IP-
style networks [14, 9, 19]. A mobile agent names nodes by 
fixed addresses, knows the network configuration a priori, 
and relies on the underlying network to assure the 
transport between nodes. Unlike mobile agents, SMs 
address nodes by content, discover the network 
configuration dynamically, and are responsible for their 
own routing. Furthermore, since the resources possessed 
by nodes are limited SMs define a system architecture 
that requires minimal system support at nodes. SMs apply 
the general idea of code migration, but focus more on 
flexibility, scalability, re-programmability, and ability to 
perform distributed computations over ad hoc networks of 
resource constrained embedded systems. 

SMs and mobile agents share several security issues. 
Among them is host protection, for which mobile agents 
have proposed solutions based on cryptographic 
authentication of the agent’s owner. Examples of such 
systems are Telescript [25], IBM Itinerant Agents [6], 
Ajanta [15], and D’Agents [10]. The existing solutions 
control the access to resources on the recipient host by 
using capability lists or access control lists (ACL). The 
former is carried by mobile agents themselves and 
checked by the recipient host. 

Tele script implements this solution. The latter is a 
preconfigured policy residing on, and enforced by the 
recipient host. D’ Agents currently supports access control 
lists, but will eventually support both. 

Resource management is an issue which was overlooked 
and begins to catch the attention of a growing number of 
agent systems. For instance, D’Agents defines six 
resource managers to monitor and control the usage of 
consumables such as CPU time, wall-clock time and 
number of child agents, file systems, libraries, programs, 
network, screen, and each agent is limited to a finite 
consumption of these resources. 

Protecting an agent from malicious hosts is difficult. Most 
agent systems walk around this problem by assuming that 
agents run in a trusted environment such as an 
organizational network. Ajanta adopts a detective strategy 
by recording and checking audit trails. In the meantime, a 
number of partial solutions are proposed such as time-
limited black box [7] and encrypted functions [24], but few 
of them have been incorporated into real agent systems. 

All these agent systems rely on infrastructure support and 
do not have the special problems of SMs, such as key 
authentication and group management, originating from 
the ad-hoc nature of their underlying network. For secure 
key exchange, a variety of solutions are proposed by 
research done in ad hoc networks. For instance, TESLA 
[21], a broadcast authentication protocol used in group 

broadcasting [22] and routing in ad-hoc networks [12], 
achieves asymmetric properties using symmetric MAC 
functions on a loosely synchronized network in order to 
reduce the communication and computation overhead. In 
[3], the authors present a password-based multi-party key 
agreement mechanism which extends the idea of Diffie-
Hellman two-party key exchange by ensuring that all 
group members who share a password will finally reach an 
agreement on a shared session key. An example of group 
management in which the group leader or its delegates 
hold a group public-private key pair and issue a 
membership certificate, which binds a member’s public 
key to its identity, is described in [17]. 

5. CONCLUSIONS 

In this paper, we have presented a basic security 
architecture for Smart Messages (SMs) that provides 
solutions for authentication, authorization, and secure SM 
migration, while preserving the benefits of SMs such as 
flexibility, scalability, and ability to perform distributed 
computations over large scale ad hoc networks of 
embedded systems. As an initial effort to address security 
in a system based on mobile code executed over mobile 
ad-hoc networks, this paper has described the basic 
security safeguards to ensure secure cooperative 
computing using SMs and identified the main issues that 
have to be solved for a more comprehensive security 
architecture. 
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