

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 1

E-Mail: ignitedmoffice@gmail.com

Challenges, Solutions, and Open Issues of Security
Architecture of SMS

Nalla Girish

Research Scholar, CMJ University, Shillong, Meghalaya

Abstract: Smart Messages (SMs) are migratory execution units used to describe distributed computations over mobile adhoc

networks of embedded systems. The main benefits provided by SMs are flexibility, scalability, and the ability to perform
distributed computations over networks composed of heterogeneous, resource constrained, unattended embedded systems. A
key challenge that confronts SMs, however, is how to define a security architecture that protects both the SMs and the hosts,
while preserving the SM benefits.

In this paper, we present a basic SM security architecture which sets up a framework for the security related issues of SMs and
provides solutions for authentication, authorization, and secure SM migration. Since this paper is the first attempt to
investigate the unique security challenges posed by a system based on mobile code executed over mobile ad hoc networks,
we also discuss the main issues that remain to be solved for a more comprehensive SM security architecture.

---------------------------♦----------------------------

1. INTRODUCTION

Programming user-defined distributed applications for
large scale, ad hoc networks of embedded systems (NES)
poses a significant challenge due to the unique
characteristics exhibited by these networks. We envision
future NES composed of a large number of
heterogeneous, resource constrained systems, which are
able to communicate Through wireless interfaces. These
nodes can bemobile, can fail at any moment, or can even
be disposable. Therefore, NES will be formed ad hoc and
their resources will be unknown a priori. Sensor networks
[13, 11] have represented the first step toward this vision,
but we expect to encounter such networks in any aspect
of our daily routine (e.g., home appliances communicating
to each other, cars cooperating to adapt to traffic
conditions, intelligent cameras performing object tracking
over large areas).

Recently, we have proposed cooperative computing [5] as
a new distributed programming model for large scale, ad
hocNES. Applications developed under thismodel are
composed of cooperative Smart Messages (SMs). SMs
are collections of code and data that migrate through the
network, one hop at a time, executing at each node.
Nodes in the network support SMs by providing a virtual
machine and a name-based memory region, called Tag
Space. The applications need to execute on target nodes
named by their content, and in doing so they migrate to
nodes of interest using application controlled routing
executed at intermediate nodes.

SMs’ design has been influenced by a variety of other
research efforts, particularly mobile agents for IP-style
networks [14, 9, 19]. We leverage the general idea of code
migration, but we focus more on flexibility, scalability, re-
programmability, and the ability to perform distributed
computing for unattended NES. Section 6 describes the
similarities and differences between SMs and mobile
agents in more details.

This paper addresses a key challenge that confronts SMs:
how to define a security architecture, while preserving the
flexibility offered by SMs and avoiding a drastic
degradation of performance. Although the security for both
mobile agents [10, 15] and ad hoc networks [22, 12] have
been extensively studied, this is the first attempt (to the
best of our knowledge) to investigate the security issues
for a system based on code migration over mobile ad hoc
networks.

Given the complexity of the problem, our intentions are
threefold: identify the unique challenges faced by such a
system, design an extensible framework for SM security
which provides solutions for the basic, but critical SM
security requirements, and present the open issues that
remain to be solved.

Similar to mobile agents, there are three main issues that
have to be solved: (1) protecting recipient hosts from SMs,
(2) protecting SMs from each other, and (3) protecting
SMs from malicious hosts. These problems become more
severe for SMs due to the volatile nature of their target
networks.

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 2

E-Mail: ignitedmoffice@gmail.com

Unlike traditional mobile agents for relatively stable IP-
based networks, the SMs have to overcome the lack of an
infrastructure or a central authority, specific to mobile ad
hoc networks, which increases significantly the difficulty of
key authentication and group management.

Additionally, SMs have a number of unique features that
influence the design of a security architecture. First, SMs
have a unified data model (the Tag Space) which provides
a single point of access to systemresources. Second, no
direct communication is allowed among SMs, and the only
communication channel is through the shared Tag Space.
Third, the SM execution is non-preemptive. And fourth,
end-to end encryption is not possible for all components of
an SM since an SM has to execute at each hop in the path
(i.e., it has to execute at least the routing).

The rest of this paper is organized as follows. We start by
providing an SM overview in Section 2. Section 3 presents
the security challenges faced by SMs. In Section 4, we
describe a basic security architecture for SMs, while
Section 5 discusses the open issues and future work.
Related work is presented in Section 6, and the paper
concludes in Section 7.

2. BASIC SECURITY ARCHITECTURE

In this section, we present a basic security architecture for
SMs, which does not intend to overcome all challenges
and come up with a complete solution. Instead, it sets up
an extensible framework and provides lightweight
safeguards to support basic, but critical security
requirements of cooperative computing using SMs.
Specifically, this basic architecture addresses the first two
challenges discussed in the previous section (i.e., we do
not address the protection of SMs against malicious hosts,
except for eavesdropping). Next section will cover some of
the open issues and will provide an insight into possible
solutions for them.

2.1. ASSUMPTIONS

We assume that a key exchange mechanism is available.
Secure key exchange over ad-hoc networks is an active
research topic by itself [3, 21, 22], and although very
challenging, it is outside the scope of this paper. A simple
solution for medium-scale networks is through an off-band
channel.

We further assume that each node carries a public-private
key pair, and that digital signature based authentication
can be implemented. Additionally, each node uses the
same one way hash function, and each code brick of an
SM is identified by its hash value (i.e., the value returned
by applying the hash function stored at each node on the
code itself).

Finally, since our virtual machine for SM execution is an
extension of Sun’s Java KVM, we rely on Java language
to provide both type safety (i.e., strong type checking) and
memory safety (i.e., forge-proof pointers).

Figure 2. Tag Structure

2.2. SMART MESSAGES IDENTITY

The ID of an SM is a unique number, which consists of the
ID of the originator node (OGID) and a timestamp. Since
an SM can migrate on it sown and create or spawn new
SMs at intermediate nodes, its family information might be
needed for access control to the Tag Space. A family of
SMs is defined as all SMs generated from the same SM,
called ancestor of the family (i.e., the code bricks carried
by a child SM represent a subset of its parent’s code
bricks). Therefore, each SM carries its ancestor ID (AID).
In addition, an SM carries a list of the hash values for all
its code bricks, which are used for more flexible access
control to the Tag Space. For instance, some routing tags
may be accessible to all SMs using the same routing brick.
Such an access policy can easily be verified using the
brick level hashes. Also, these hashes serve as indexes,
during migrations, to retrieve only the code bricks that are
not cached locally. Once all this information needed for
authentication and access control is generated, the sender
host digitally signs it.

2.3. AUTHENTICATION

Before any SM migration, the sender host authenticates
the recipient host (i.e., verifies if the recipient is trusted or
not). The ID, AID, and hash list of the SM are encrypted
using sender’s private key and decrypted by the recipient
with sender’s public key. The SM’s code, data, and
execution state might be encrypted with the recipient’s
public key and decrypted at destination with the private
key. This solution, however, can be computationally
expensive because the SM has to be encrypted/decrypted
at each node in the path toward a node of interest (i.e.,
SMs execute their routing at each node in the path).
Therefore, Section 5 discusses an approach that allows an
SM to pass through the intermediate nodes in an
encrypted form (except for its routing and execution state)
and be decrypted only at the node of interest.

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 3

E-Mail: ignitedmoffice@gmail.com

Upon receiving an incoming SM, the recipient host checks
if the digital signature is valid and made by a trusted party.
Then, the integrity of the SM is verified using the list of
hashes. If any code brick is detected to be modified, the
SM is considered being tampered and thereby not trusted.

2.4. ACCESS CONTROL

A unique characteristic of SMs is that no direct access is
allowed to system resources (i.e., the SMs access both
their data and system resources through the Tag Space).
The advantage of this design is that the Tag Space is a
single point of access control, which can be implemented
and enforced uniformly. Compared to other systems [10],
it greatly simplifies the control mechanisms. As described
in Section 2, there are two types of tags: I/O tags and
application tags. It is the host’s responsibility to define
policies to protect the I/O tags and the implementation is
straightforward. The application tags are the only mean of
communication and coordination among cooperative SMs.
The SM creating the tag, called tag owner, determines the
access control policy and delegates the host to enforce
this policy on its behalf. Protecting the application tags
ensures that SM executions do not interfere with each
other, and therefore provides a secure channel for
cooperation. Besides its name, lifetime, and data, a tag
incorporates also the ID of its owner (OID), the ID of its
owner’s ancestor (AID), and the ACL (access control list),
as depicted in Figure 2. Upon creating a tag, the VM sets
the OID field to the ID of the SM that created the tag.
Then, the SM establishes the ACL, which is a matrix of
subjects and their access permissions.

Access permissions for tags are similar to those for Unix
files including read(r) and write(w) (i.e., to execute a
system call, a read or a write is performed on an I/O tag).
The ACL contains five protection domains: Owner, Family,
Origin, Code, and Others. The Owner and Others
protection domains define the access permissions for the
owner of the tag and for any SM, respectively. The group
concept, defined as an arbitrary relation over SMs,
supports more flexible cooperation, but also requires high
overhead of managing the group membership on-the-fly.
Currently, our architecture does not support dynamic
cooperation among totally independent SMs (this issue is
discussed in more details in Section 5). Instead, we define
three protections domains that allow cooperation among
well-defined groups of SMs (i.e., Family, Origin, Code). In
the following, we present three scenarios that illustrate
these protection domains.

Family cooperation. In Figure 3, all cooperative SMs

originate from a common SM ancestor. For instance, SM1

Figure 3. Family Cooperation

Figure 4. Single Originator Cooperation

is created on No, migrates to Nc and creates a child, SM2,
to help it discover a route. Once a route is discovered,
SM1 needs permissions to access the tags created by
SM2. Therefore, SM2 sets the ACL to fFamily, rwg (i.e.,
the AID of T is the same with the AID of SM1).

SINGLE ORIGINATOR COOPERATION

Figure 4 shows the scenario when the group of
cooperative SMs originate from a common node. SM1 and
SM2 are created on node No and migrate to target node
Nt, via different paths. SM1 arrives at Nt before SM2 and
creates a tag T. It also sets theACL as fOrigin, rwg such
that SM2 will be able to access T (i.e., the unique IDs of
SM1 and SM2 contain the same OGID). This scenario is
very likely to be encountered since many nodes are small
devices, such as PDAs or cell phones, owned by a single
user.

CODE-BASED COOPERATION

In addition to the simple groups described before, the SM
group cooperation can be coordinated more flexibly based
on code bricks. To ensure cooperation among SMs that
are aware of the code used for data sharing or data
exchange, each tag has a list of associated hash values
for certain code bricks. These hash values define the
members of the Code group (they may or may not belong
to the owner of the tag). By definition, an SM is a member
of the Code group if the hash value of its currently
executing code brick belongs to this list. For instance, SMs
using the same routing brick can add the hash value
corresponding to this brick to the tag’s list of hash values
in order to facilitate route sharing among them. Figure 5
presents such an example. SM1 creates a tag T and sets
the ACL to fCode=(Cr), rwg to grant access to all the other
SMs using the Cr routing brick. Hence, SM2 has the
permissions to use T. Another example of code-based

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 4

E-Mail: ignitedmoffice@gmail.com

cooperation is an SM producer-consumer application
(independent SMs, created on different nodes, but aware
of the code bricks that access the shared data) that
attaches the hash values of the code bricks used to share
data to certain tags of interest.

Figure 5. Code-based Cooperation

2.5. AUTHORIZATION

Each time an SM tries to execute an operation on a tag,
the VM performs the authorization process. Based on the
credentials presented at authentication and the currently
executing code brick, the SM is associated with at least
one protection domain. The request is granted if the
SMhas the necessary permission to access the tag in any
of the protection domains it has been associated with.

2.6. RESOURCE CONSUMPTION CONTROL

To address the challenge posed by resource depletion at
nodes and to ensure a simple resource management
mechanism among competing SMs, we implement a
contract based resource control mechanism. Each SM
carries its resource requirement estimates in a resource
table, which works as a resource contract between the
recipient host and the message. As explained in Section
2, the Admission Manager decides whether or not to
accept the SM, and the VM enforces the contract. Since
SM execution is non preemptive, once an SM is admitted,
the recipient node guarantees that enough resources are
available for its execution. Additionally, the non-
preemptive execution avoids the potential problem of
multiple SMs competing for resources.

3. OPEN ISSUES AND FUTURE WORK

Security of both mobile agents and ad-hoc networks is
known to be difficult. The combination of the two makes
the Solutions more elusive. Therefore, the SM security
architecture is far from complete and leaves several open
issues.

A first issue is how to achieve key exchange and
validation without a central authority. It is clear that the
treelike trust which is the foundation of public key
infrastructure [2] is not suitable for mobile ad-hoc
environments. Instead, the web of trust as first described

in PGP [8] seems more promising. Furthermore, to
counter the potential vulnerability of having one malicious
certificate authority subvert the whole system, fault-
tolerance [26] and voting protocols [18] can be applied. A
main drawback of these methods is the overhead in terms
of message costs. We plan to investigate solutions that
include achieving asymmetric proper ties using symmetric
cryptography [21], and combining ID based and threshold
cryptography as suggested in [16].

Given the wireless nature of the underlying network, an
SM has to be protected against eavesdropping. Since
most of the time only the SM routing is executed (i.e., the
rest of the code executes only on nodes of interest), there
is no need to pay the cost of using hop-by-hop
encryption/decryption for all code and data bricks. Amore
efficient solution would be to allow the routing brick to
encrypt all the other code and data bricks using a routing-
specific algorithm and a key generated based on the
SMID. Upon arrival at a node of interest, the routing
decrypts the SM using the same key. The routing code
and data, as well as the execution state, are still encrypted
with the next hop public key and decrypted with the private
key at destination.

As we mentioned in Section 3, there is no way for a host
to predict on which hosts the SMs will be executed since
SMs are autonomous on their way. The direct
consequence is that it is hard to prevent an SM from being
tampered by a malicious host by simply encrypting the
message. Hardware solutions [1, 20] represent an option.
The concern with this solution is the extra cost of the
devices. Complete software solutions are not known yet,
but code confusion and encryption techniques are
investigated [7, 24] to achieve agent security.

A significant issue that we plan to address is how to
support arbitrary dynamic cooperation among totally
independent SMs (i.e., a more flexible access control to
the Tag Space is needed). The problem can be reduced to
group membership management in ad-hoc networks. The
current available protocols rely on either certificate [17] or
distances [23], but they are constrained by the availability
of a certificate authority and provide only limited flexibility
for group description.

Finally, the network as a whole has to be protected
against malicious SMs that consume too many resources
(e.g., an SM that loops forever through the network, but
respects its resource contract at each node). We are
currently investigating a market-based approach [10]
where each SM acquires off-line or on-demand a number
of tokens which are used ”to pay” for the resources
consumed in the network.

4. RELATED WORK

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 5

E-Mail: ignitedmoffice@gmail.com

SMs are influenced by the design of mobile agents for IP-
style networks [14, 9, 19]. A mobile agent names nodes by
fixed addresses, knows the network configuration a priori,
and relies on the underlying network to assure the
transport between nodes. Unlike mobile agents, SMs
address nodes by content, discover the network
configuration dynamically, and are responsible for their
own routing. Furthermore, since the resources possessed
by nodes are limited SMs define a system architecture
that requires minimal system support at nodes. SMs apply
the general idea of code migration, but focus more on
flexibility, scalability, re-programmability, and ability to
perform distributed computations over ad hoc networks of
resource constrained embedded systems.

SMs and mobile agents share several security issues.
Among them is host protection, for which mobile agents
have proposed solutions based on cryptographic
authentication of the agent’s owner. Examples of such
systems are Telescript [25], IBM Itinerant Agents [6],
Ajanta [15], and D’Agents [10]. The existing solutions
control the access to resources on the recipient host by
using capability lists or access control lists (ACL). The
former is carried by mobile agents themselves and
checked by the recipient host.

Tele script implements this solution. The latter is a
preconfigured policy residing on, and enforced by the
recipient host. D’ Agents currently supports access control
lists, but will eventually support both.

Resource management is an issue which was overlooked
and begins to catch the attention of a growing number of
agent systems. For instance, D’Agents defines six
resource managers to monitor and control the usage of
consumables such as CPU time, wall-clock time and
number of child agents, file systems, libraries, programs,
network, screen, and each agent is limited to a finite
consumption of these resources.

Protecting an agent from malicious hosts is difficult. Most
agent systems walk around this problem by assuming that
agents run in a trusted environment such as an
organizational network. Ajanta adopts a detective strategy
by recording and checking audit trails. In the meantime, a
number of partial solutions are proposed such as time-
limited black box [7] and encrypted functions [24], but few
of them have been incorporated into real agent systems.

All these agent systems rely on infrastructure support and
do not have the special problems of SMs, such as key
authentication and group management, originating from
the ad-hoc nature of their underlying network. For secure
key exchange, a variety of solutions are proposed by
research done in ad hoc networks. For instance, TESLA
[21], a broadcast authentication protocol used in group

broadcasting [22] and routing in ad-hoc networks [12],
achieves asymmetric properties using symmetric MAC
functions on a loosely synchronized network in order to
reduce the communication and computation overhead. In
[3], the authors present a password-based multi-party key
agreement mechanism which extends the idea of Diffie-
Hellman two-party key exchange by ensuring that all
group members who share a password will finally reach an
agreement on a shared session key. An example of group
management in which the group leader or its delegates
hold a group public-private key pair and issue a
membership certificate, which binds a member’s public
key to its identity, is described in [17].

5. CONCLUSIONS

In this paper, we have presented a basic security
architecture for Smart Messages (SMs) that provides
solutions for authentication, authorization, and secure SM
migration, while preserving the benefits of SMs such as
flexibility, scalability, and ability to perform distributed
computations over large scale ad hoc networks of
embedded systems. As an initial effort to address security
in a system based on mobile code executed over mobile
ad-hoc networks, this paper has described the basic
security safeguards to ensure secure cooperative
computing using SMs and identified the main issues that
have to be solved for a more comprehensive security
architecture.

REFERENCES

[1] http://www.cl.cam.ac.uk/ rja14/tcpa-faq.html.

[2] C.Adams, S. Lloyd, and S.Kent. Understanding
the Public-Key Infrastructure: Concepts, Standards and
Deployment Considerations. New Riders Publishing, 1999.

[3] N.Asokan and P.Ginzboorg. KeyAgreement inAd-
hocNetworks. In Nordsec’99Workshop, 1999.

[4] C. Borcea, C. Intanagonwiwat, A. Saxena, and L.
Iftode. Self-Routing in Pervasive Computing Environments
using Smart Messages. In Proceedings of the 1st IEEE
International Conference on Pervasive Computing and
Communications (PerCom), March 2003.

[5] C. Borcea, D. Iyer, P. Kang, A. Saxena, and L.
Iftode. Cooperative Computing for Distributed Embedded
Systems. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS),
pages 227–236, July 2002.

[6] D. Chess, B. Grosof, and C. Harrison. Itinerant
Agents for Mobile Computing. In IBM Tech Report RC
20010, 1995.

Journal of Advances and Scholarly Researches in Allied Education

Vol. III, Issue-V, January-2012, ISSN 2230-7540

Available online at www.ignited.in Page 6

E-Mail: ignitedmoffice@gmail.com

[7] F.Hohl. Time Limited Blackbox Security:
Protecting Mobile Agents from Malicious Hosts. In G.
Vigna, editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 92–113.
Springer-Verlag, 1998.

[8] S. Garfinkel. PGP: Pretty Good Privacy. O’Reilly &
Associates, 1994.

[9] R. S.Gray,G. Cybenko,D.Kotz, andD. Rus. Mobile
agents: Motivations and State of the Art. In J. Bradshaw,
editor, Handbook of Agent Technology. AAAI/MIT Press,
2001.

[10] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus.
D’Agents: Security in a multiple-language, mobile-agent
system. In G. Vigna, editor, Mobile Agents and Security,
volume 1419 of Lecture Notes in Computer Science,
pages 154–187. Springer-Verlag, 1998.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler,
and K. Pister. System Architecture Directions for
Networked Sensors. In Proceedings of the Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 93–104, November 2000.

[12] Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: a
secure on-demand routing protocol for ad hoc networks. In
Proceedings of the 8th annual ACM/IEEE International
Conference on Mobile Computing and Networking
(MobiCom), pages 12–23, 2002.

[13] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed Diffusion: AScalable
andRobustCommunicationParadigm for Sensor Networks.
In Proceedings of the Sixth annual ACM/IEEE
International Conference on Mobile Computing and
Networking (MobiCom), pages 56–67, August 2000.

[14] N. Karnik and A. Tripathi. Agent
ServerArchitecture for the AjantaMobile-Agent System. In
Proceedings of the 1998 InternationalConferenceon
Parallel andDistributed Processing Techniques and
Applications (PDPTA’98), July 1998.

[15] N. M. Karnik and A. R. Tripathi. Security in the
Ajanta Mobile Agent System. Software - Practice and
Experience, 2000.

[16] A. Khalili, J. Katz, and W. Arbaugh. Toward
Secure Key Distribution in Truly Ad-Hoc Networks. In
IEEE Workshop on Security and Assurance in Ad-Hoc
Networks, 2003.

[17] S. Maki, T. Aura, and M. Hietalahti. Robust
Membership Management for Ad-hoc Groups. In Proc. 5th

NordicWorkshop on Secure IT Systems (NORDSEC
2000), 2000.

[18] D. Malkhi and M. Reiter. Byzantine Quorum
Systems. In Distributed Computing, volume 11(4), pages
203–213. 1998.

[19] D. Milojicic, W. LaForge, and D. Chauhan. Mobile
objects and agents. In USENIX ConferenceonObject-
oriented Technologies and Systems, pages 1–14, 1998.

[20] E. Palmer. An Introduction to Citadel - A Secure
Cypto Coprocessor for Workstations. In IFIP SEC’94,
1994.

[21] A. Perrig, R. Canetti, D.Tygar, and D. Song. The
TESLA Broadcast Authentication Protocol. In RSA
Cryptobytes, 2002.

[22] A. Perrig, R. Szewczyk,V. Wen, D. Culler, and J.
D. Tygar. SPINS: Security Protocols for SensorNetowrks.
In Proceedings of the 7th annual ACM/IEEE International
Conference on Mobile Computing and Networking
(MobiCom), pages 189–199, 2001.

[23] G. Roman, Q. Huang, and A. Hazemi. Consistent
Group Membership in Ad Hoc Networks. In Proceedings of
23rd InternationalConferenceon Software Engineering(
ICSE’01), 2001.

[24] T. Sander andC.Tschudin.
ProtectingMobileAgents against Malicious Hosts. In G.
Vigna, editor,Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 44–60.
Springer-Verlag, 1998.

[25] J. E. White. Telescript technology: An Introduction
to the Language. In GeneralMagic White Paper, 1995.

[26] L. Zhou, F. Schneider, andR. van Renesse.
COCA:A secure distributed on-line certification authority.
Technical Report TR2000-1828, Dept. of Computer
Science, Cornell University, 2000.

