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Abstract:  This article illustrates how polynomials and polynomial matrices can be used to describe linear systems. The focus 
is put on the transformation to and from the state-space equations, because it is a convenient way to introduce gradually the 
most important properties of polynomials and polynomial matrices, such as: coprimeness, greatest common divisors, 
unimodularity, column- and row- reducedness, canonical Hermite or Popov forms.    

---------------------------♦---------------------------- 

1. INTRODUCTION 

The first step when studying and designing a control 
strategy for a physical system is the development of 
mathematical equations that describe the system. These 
equations are obtained by applying various physical laws 
such as Kirchoff's voltage and current laws (electrical 
systems) or Newton's law (mechanical systems). The 
equations that describe the physical system may have 
different forms. 

They may be linear equations, nonlinear equations, 
integral equations, difference equations, differential 
equations and so on. Depending on the problem being 
treated, one type of equation may prove more suitable 
than others. 

The linear equations used to describe linear systems are 
generally limited either to 

 The input-output description, or external 
description in the frequency domain, where the 
equations describe the relationship between the 
system input and system output in the Laplace 
transform domain (continuous-time systems) or in 
the z-transform domain (discrete-time systems), 
or 

 The state-variable equation description, or internal 
description, a set of first-order linear differential 
equations (continuous-time systems) or difference 
equations (discrete-time systems). 

Prior to 1960, the design of control systems had been 
mostly carried out by using transfer functions. However, 
the design had been limited to the single variable, or 
single-input-single-output (SISO) case. Its extension to the 
multivariable, or multi-input-multi-output (MIMO) case had 
not been successful. The state-variable approach was 
developed in the sixties, and a number of new results 

were established in the SISO and MIMO cases. At that 
time, these results were not available in the transfer-
function, or polynomial approach, so the interest in this 
approach was renewed in the seventies. Now most of the 
results are available both in the state-space and 
polynomial settings. 

The essential difference between the state-space 
approach and the polynomial approach resides in the 
practical way control problems are solved. Roughly 
speaking, the state-space approach heavily relies on the 
theory of real and complex matrices, whereas the 
polynomial approach is based on the theory of 
polynomials and polynomial matrices. For historical 
reasons, the computer aided control system design 
packages have been mostly developed in the late eighties 
and nineties for solving control problems formulated in the 
state-space approach. Polynomial techniques, generally 
simpler in concepts, were most notably favored by 
lecturers teaching the basics of control systems, and the 
numerical aspects have been left aside. Recent results 
tend however to counterbalance the trend, and several 
reliable and efficient numerical tools are now available to 
solve problems involving polynomials and polynomial 
matrices. In particular, the Polynomial Toolbox for Matlab 
is recommended for numerical computations with 
polynomials and polynomial matrices. 

Whereas the notion of the state variable of a linear 
systems may sometimes sounds somehow artificial, 
polynomials and polynomial matrices arise naturally when 
modeling dynamical systems. Polynomial matrices can be 
found in a variety of applications in science and 
engineering. Second degree polynomial matrices arise in 
the control of large flexible space structures, earthquake 
engineering, the control of mechanical multi-body 
systems, and stabilization of damped gyroscopic systems, 
robotics, and vibration control in structural dynamics. For 
illustration, natural modes and frequencies of a vibrating 
structure such as the Millennium footbridge over the river 
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Thames in London are captured by the zeros of a 
quadratic polynomial matrix. Third degree polynomial 
matrices are sometimes used in aero-acoustics. In fluid 
mechanics the study of the spatial stability of the Orr-
Sommerfeld equation yields a quartic matrix polynomial. 

In this article, we will describe a series of concepts related 
to polynomial matrices. We will introduce them gradually, 
as they naturally arise when studying standard 
transformations to and from the state- space domain. 

2. SCALAR SYSTEMS 

2.1. RATIONAL TRANSFER FUNCTION 

Assuming that the knowledge of the internal structure of 
the system is not available, the transfer function 
description of a system gives a mathematical relation 
between the input and output signals of the system. 
Assuming zero initial conditions, the relationship between 
the input u and the output y of a system can be written as 

where s is the Laplace transform in 
continuous-time (for discrete-time systems, we use the z-
transform and the variable z), and G(s) is the scalar 
transfer function of the system. G(s) is a rational function 
of the indeterminate s that can be written as a ratio of two 

polynomials  where n(s) is a numerator 
polynomial and d(s) is a denominator polynomial in the 
indeterminate s. In the above description of a transfer 
function, it is assumed that polynomials n(s) and d(s) are 
relatively prime, or coprime polynomials, i.e. they have no 
common factor, except possibly constants. The degree of 
denominator polynomial d s is the order of the linear 
system. 

When the denominator polynomial is monic, i.e. with 
leading coefficient equal to one, the transfer function is 
normalized or nominal. It is always possible to normalize a 
transfer function by dividing both numerator and 
denominator polynomials by the leading coefficient of the 
denominator polynomial. 

 

 

Figure 1: Mechanical system. 

As an example, consider the mechanical system shown in 
Figure 1. For simplicity, we consider that the friction force 
between the floor and the mass consists of viscous friction 
only (we neglect the static friction and Coulomb friction). It 
is given by f = k\dy/dt, where ki is the viscous friction 
coefficient. We also assume that the displacement of the 
spring is small, so that the spring force is equal to k 2y, 
where k2 is the spring constant. Applying Newton's law, 
the input-output description of the system from the 
external force u (input) to the displacement y (output) is 

given by  Taking the Laplace 
transform and assuming zero initial conditions, we obtain 

so that 

Transfer 
function G(s) has numerator polynomial n(s) = 1 of degree 
zero and denominator poly-

nomial of degree two. The 
corresponding linear system has therefore order two. 
Dividing both n(s) and d(s) by the leading coefficient of 
d(s) we obtain the normalized transfer function 

 

2.2. FROM TRANSFER FUNCTION TO STATE-
SPACE 

Similarly to network synthesis where the objective is to 
build a network that has a prescribed impedance or 
transfer function, it is very useful in control system design 
to determine a dynamical equation that has a described 
rational transfer matrix G s . Such an equation is called a 
realization of G s . The most common ones for linear 
systems are state-space realizations of the form 

 where x {t) is the state 
vector, u{t) is the input, y{t) is the output and ABC are 
matrices of appropriate dimensions. Such realizations 
correspond to strictly proper transfer functions. In the case 
of proper transfer function, one must add a direct 
transmission term Du {t) to the output variable y(t). For 
simplicity we shall assume that D = 0 in the sequel. 

For every transfer function, there are an unlimited number 
of state-space realizations. So it is relevant to introduce 
some commonly used, or canonical realizations. We shall 
present two of them in the sequel: the controllable form 
and the observable form. However, note there are other 
canonical forms such as the controllability, observability, 
parallel, cascade or Jordan form that we will not describe 
here for conciseness. 

2.2.1. CONTROLLABLE CANONICAL FORM 

For notational simplicity, we will consider a system of third 
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order, with normalized strictly proper transfer function 

 One can then 
easily extend the results to systems of arbitrary order. 

The controllable canonical realization corresponding to G 
s has state-space matrices 

 

As its name suggests, this realization is always 
controllable no matter whether n s and d s are coprime or 
not. If n s and d s are coprime, then the realization is 
observable as well. 

2.2.2. OBSERVABLE CANONICAL FORM 

The observable canonical realization corresponding to G s 
has state-space matrices 

 Note that this realization is dual to the controllable 
canonical realization in the sense that matrix A is 
transposed, and vectors B and C are interchanged. 
Obviously, this form is always observable. If n(s) and d s 
are coprime, it is also controllable. 

2.3. FROM STATE-SPACE TO TRANSFER 
FUNCTION 

Assuming zero initial conditions and taking the Laplace 
transform of the state-space equations we obtain that 

 where I denotes the identity 
matrix of the same dimension as matrix A. Recalling the 
formula of the inverse of a matrix, the above equation can 
be written as 

Polynomial

is generally referred to as the characteristic 
polynomial of matrix A. 

It may happen that polynomials and have some 
common factors captured by a common polynomial term f 
s, so that we can write 

where n s and d s are 
coprime. The ratio of n s over d s as defined above is a 
representation of the transfer function G(s). When n(s) 
and d(s) are coprime the representation is called 
irreducible. It turns out that G(s) is irreducible if and only if 
pair (A,B) is controllable and pair {C,A) is observable. 

Checking the relative primeness of two polynomials n s 
and d s can be viewed as a special case of finding the 

greatest common divisor (gcd) of two polynomials. This 
can be done either with the Euclidean division algorithm, 
or with the help of Sylvester matrices. 

2.4. MINIMALITY 

A state-space realization {A,B,C) of a transfer function 
G(s) is minimal if it has the smallest number of state 
variables, i.e. matrix A has the smallest dimension. 

It can be proven that A B C is minimal if and only if the two 
polynomials defined 

above ar
e coprime, or equivalently, if and only if (A,B) is 
controllable and C A is observable. 

3. CONCLUSION 

We have described the use of matrix fraction descriptions 
(MFDs) to model scalar and multivariable linear systems. 
The transformation from MFDs to state-space 
representation motivated the introduction of several 
concepts and several properties specific to polynomial 
matrices. 

There exist several extensions to the results described in 
this chapter. MFDs can be transformed to the so-called 
descriptor state-space 

representation  with transfer 

function  Matrix E may be 
singular, so the above representation is a generalization of 
the state-space form that captures impulsive dynamics 
and the structure at infinity. One can also mention here 
polynomial matrix descriptions (PMDs) 

 with the associated system 

polynomial matrix as a generalization 
of MFDs. There exists a whole theory of state-space 
realizations of PMDs, based on properties of the system 
polynomial matrix. 

For practical computation with polynomials and polynomial 
matrices, modern software packages are available. In 
particular, the Polynomial Toolbox for Matlab is 
recommended for numerical computations with 
polynomials and polynomial matrices. 
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