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Abstract – The Dugdale model for a single straight slit in an infinite plane was applied to the case of two straight 
cracks suggested by Theocaris in an infinite plane (55). It is further adjusted by him using a stepwise 
approximation to obtain the solution of two straight collinear cracks where the formed plastic zones are closed by 
variable load spread across their rims. 

---------------------------♦---------------------------- 

INTRODUCTION 

An continuous, homogeneous, isotropic, elastic-perfectly 
continuous plastic disk, bounded by the xoy axis, is split 
between two straight hairline cracks L1 and L2. Such fair 
and collinear cracks occur on the ox-axis, and are 
positioned symmetrically along the oy-axis. The crack L1 
lies from (— b, 0) to (— a, 0) and L2 lies from (a, 0) to (b, 
0) unidirectional stress, is added perpendicularly to the 
rims of the cracks L1 and L2 at infinite boundary. While 
the faces of the cracks expand creating narrow patches of 
plastic instead of the tips of the cracks. In the four tips – b, 
-a, a and b, the plastic zones formed are denoted by and, 
respectively. The plastic zone occupies the [b, d] region; 
the plastic zone occupies the [c, a] interval; the plastic 
zone occupies [-a, -c] and the [-d, -b] interval. 

-- rim of plastic zones (I = 1, 2, 3, 4) is subject to the 
distribution of compressive tension, and Pxy = 0. Every 
position on the surface is denoted by t, and the plate's 
yield point tension. This prevents the cracks from further 
widening. 

The complete configuration as shown in Figure 4.1 

Conclusion 

At the tips of the cracks obtained for two part problems, 
the result of the above mentioned problem is obtained 
using the theory of super positions of stress strength 
variables. These problems are extracted correctly from the 
issue mentioned in section 4.1. Both problems are called 
Problems I and II. This are listed below and clarified 
below. 

 

MATERIAL AND METHOD: 

Problem I 

An infinite, homogeneous, isotropic, elastic-perfectly 
plastic plate occupies xoy plane. The plate is cut along two 

straight cracks R1 : 314  UUL  and R2 : 122  UUL
. The cuts R1 

and R2 occupy the interval [-d, -c] and [c, d] respectively. 

The boundary conditions of problem are 

(i) No stresses are acting on the rims of the cracks 
R1 and R2. 

(ii) The stress prescribed at infinite boundary is 

0,0,   xxxyyy PPP 
. 

(iii) The displacements are single valued on and 
around the cracks. 

This problem is the same as stated in section 3.2.1 and 
depicted in figure 3.2 of chapter 3. We recapitulate the 
solution from 3.2.1 make this chapter self-sufficient. 

The complex potential 
),(zI

 of interest may directly be 
written as 

 

Where 
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And complementary modulus 

 

The opening mode stress intensity factor at interior tip z = 
c is 

 

And at the exterior tip z = d as 

 

Problem II 

xoy plane is surrounded by a homogeneous, isotropic, and 
elastic-perfectly fluid limitless line. On the limitless plate 
ox-axis sit two hairline cracks L1 and L2. The cracks L1 
and L2 hold the [-b, -a] and [a, b] positions, respectively. 
Uniform friction Dynamically applied unidirectional (parallel 
to oy axis), which allows the cracks to expand rims. These 
are denoted by and and lie ahead of the corresponding 
tips b, a, -a and -b. The time in which the plastic region 
occupies the actual axis is [b, d]; by is [c, a]; by is [-a, -c] 
and by is [-d, -b]. 

Every rim of plastic zones I = 1, 2, 3, 4) is subjected to 
quadratic ally varying stress distribution and denotes the 
yield point tension, and t is a point on the rim of any of the 
plastic zones. 

Issue Configuration II is seen in Figure 4.2. 

The mathematical model of the above problem is obtained 
assuming that UL1U (= R1), UL2U (= R2) and lying on the 
ox axis of the infinite plate essentially form two cracks R1 
and R2. The limit conditions of the issue can be restated 
as 

(a) The cracks R1 and R2 are loaded along the rims of 
ri (i = 1, 2, 3, 4)k by stress distribution 

 

(b) The rims of L1 and L2 are stress free. 

(c) No stresses are acting at infinite of the plate. 

Using boundary conditions (a), (b) and equation (2.5-5) of 
chapter 2 following two Hilbert problems are obtained. 

 

Where 

 

Superscript II denotes that the potentials refer to problem 
II. 

The solution of equations (4.2.2-1) and (4.2.2.-2) may be 
written using equation (2.5-16) and (2.5-17) as 

 

Where 

 

And X(z) is same as defined by (4.2.1-2). The constants 
Ci(I = 0, 1,2) are determined using condition (c) stated 
above and the condition of single valuendness of 
displacement around cracks. This gives 

 

 

And 

 

Evaluating integral of the equation (4.2.2-4) complex 

potential 
)(0 z

may be written as 

 

Where 

 

 

 

 

And F(u1), F(u2), E(u1), E(u2), II (u1, 
2

1 )] and II (u2, 
2

2 ) 
are normal elliptic integrals of the first, second and kind 
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respectively. Also 

 

X(z) is same as defined by equation (4.2.1-2). These yield 

The opening mode stress intensity factor (SIF), 
II

IK
, at 

the interior tip z = c is obtained substituting value of 

),(zII
from equation (4.2.2-3 to 12), for 

)(z
 in equation 

(2.6-1) one obtains. 

 

And SIF exterior tip z = d may be written as 

 

CONCLUSION 

xoy plane is surrounded by a homogeneous, isotropic, and 
elastic-perfectly fluid limitless line. On the limitless plate 
ox-axis sit two hairline cracks L1 and L2. The cracks L1 
and L2 hold the [-b, -a] and [a, b] positions, respectively. 
Uniform friction Dynamically applied unidirectional (parallel 
to oy axis), which allows the cracks to expand rims. These 
are denoted by and and lie ahead of the corresponding 
tips b, a, -a and -b. The time in which the plastic region 
occupies the actual axis is [b, d]; by is [c, a]; by is [-a, -c] 
and by is [-d, -b]. 

Every rim of plastic zones I = 1, 2, 3, 4) is subjected to 
quadratic ally varying stress distribution and denotes the 
yield point tension, and t is a point on the rim of any of the 
plastic zones. 

Issue Configuration II is seen in Figure 4.2. 

The mathematical model of the above problem is obtained 
assuming that UL1U (= R1), UL2U (= R2) and lying on the 
ox axis of the infinite plate essentially form two cracks R1 
and R2. The limit conditions of the issue can be restated 
as By stress distribution the cracks R1 and R2 are 
positioned along the rims of ri I = 1, 2, 3, 4)k 

 

The rims of L1 and L2 are stress free. 
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