

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

Journal of Advances and
Scholarly Researches in

Allied Education

Vol. IV, Issue VII, July-2012,
ISSN 2230-7540

STRATEGY AND DOMAINS ADOPTED IN DATA
ANALYSIS

www.ignited.in

Amit Singh1 Dr. Pardeep Goel2

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances and Scholarly Researches in Allied Education
Vol. IV, Issue VII, July-2012, ISSN 2230-7540

Strategy and Domains Adopted In Data Analysis

Amit Singh1 Dr. Pardeep Goel2

1
Research Scholar, CMJ University, Shillong, Meghalaya

2
Associate Professor, Fatehabad, Haryana

Abstract: Less rigorous strategies are practiced widely in testing. Here we refer to such old favorites as boundary

testing, testing zero, one, and many occurrences of some particular phenomenon, and other standard practices given
some knowledge of the system specifics, data types, and operators. These adapt to the specification level very easily
the only transition required is working with the notation of the specification rather than that of the implementation as
is usually done.

Conclusion

Our experiments using testing strategies at the specification level led us to develop two new specification-based
testing strategies. The first, domain propagation, is an extension of partition testing. The second, specification
mutation, is an adaptation of the existing implementation-based mutation testing technique.

Key Words: Phenomenon, Strategies, Specification Mutation, Adaptation.

---------------------------♦-----------------------------

INTRODUCTION

This paper examines applications of formal methods to
software testing. Which offers many advantages for
testing. The formal specification of a software product
can be used as a guide for designing functional tests
for product. The specification precisely defines
fundamental aspects of the software, while more
detailed and structure information is omitted. Thus, the
tester has the important information about the
product’s functionality without having to extract it from
necessary detail. Testing from formal specification
offers simpler, structured, and more rigorous approach
to the development of functional tests than standard
testing techniques. The strong relationship between
specification and tests facilitates error pin pointing and
can simplify regression testing. An important
application of specifications in testing is providing test
oracles. The specification is an authoritative
description of system behavior and can be used to
derive expected results for test data. Review The
computation of the success/failure verdict of test
execution tools follows from the comparison between
the outputs given by the system under test and the
expected ones defined by the formal specification.
Besides the possibility of computing verdicts for a test
case execution, using formal specifications allows one
to properly define the conformance relation, which
states what it means for a system to conform to its
specification. Such a conformance relation depends on
both test hypotheses on the system, which allow to
consider it as a formal model, and observability
restrictions on the system. These observability
restrictions are used to select test cases which can be
interpreted as successful or not when performed by
the system under test.

We informally argued that software testing is difficult.
DeMillo et al., Morell, and Voas have separately
proposed a very similar fault/failure model that
describes the conditions under which a fault will
manifest itself as a failure. Using the fault/failure
model proposed by Voas and the Kinetic example
initially created by Paul, we can define a simple test
suite to provide anecdotal evidence of some of the
difficulties that are commonly associated with writing
a test case that reveals a program fault. As stated in
the PIE model proposed by Voas, a fault will only
manifest itself in a failure if a test case Tfexecutes the
fault, causes the fault to infect the data state of the
program, and finally, propagates to the output. That
is, the necessary and sufficient conditions for the
isolation of a fault in P are the execution, infection,
and propagation of the fault [DeMillo and Offutt, 1991,
Morell, 1990, Voas, 1992].An oracle is a means to
judge the success or failure of a test, that is, to judge
the correctness of the system for some test. The
simplest oracle is comparing actual results with
expected results by hand. This can be very time
consuming, so automated oracles are sought. Test
case A test is useless if no expectations of behavior
are held. Hence, a test case must contain both test
data and a test oracle for the data.

Oracle partitioning is a method of breaking up a very
large table and/or its associated indexes into smaller
pieces. Each piece, in essence, is either a table or an
index although they are referred to as ‘partitions’
since together, they make up a larger object.
Although indexes belonging to a given table are
generally partitioned along with the table, Oracle
does support the ability to partition tables and
indexes independently such that you could have a

Amit Singh1 Dr. Pardeep Goel2

w
w

w
.i

gn
it

e
d

.i
n

2

 Strategy and Domains Adopted In Data Analysis

regular, non-partitioned table but its associated
indexes are partitioned. Each partition will be in its own
segment and potentially, and for greatest flexibility, in
its own table space (will allow independent backup and
recovery). The primary purpose of partitioning is faster
query access. This is accomplished via partition
pruning (elimination), a method where Oracle can
query the data dictionary and determine the content or
definition of a given partition without having to query
that partition’s data, as it otherwise would in a non-
partitioned table. In this way, Oracle can very quickly
exclude large portions of data before the query search
begins and not have to search through certain
partitions at all in order to resolve a query. Rather, very
focused subsets of data can be quickly isolated to be
further refined.

MATERIAL AND METHOD

Some discussion of specification-based testing
strategies is in order. Though strategies aren't central
to this thesis, we use quite a range in demonstrating
the framework. This chapter discusses using existing
strategies with the framework (essentially, using
strategies at the specification level), and two new
strategies we developed.

We do not need to invent a gamut of new testing
strategies for specification-based testing. Most existing
strategies already use either generally applicable
selection criteria or specification-level criteria. We can
use these strategies with little or no adaptation to the
specification-level. There are two issues in adapting
strategies for specification-based testing:

 how differences between the implementation
and the specification affect the strategy, and

 how the strategy can make full use of the
specification.

Dealing with a specification can affect a strategy due
to the abstract nature of the specification, certain
elements of specification style, or features of the
particular specification language used. Certain
implementation concepts are alien in a specification.
For example, the concept of a path through an
implementation does not transfer well to an abstract
specification where the detailed steps in transforming
input to output are not defined. So, a strategy like path
testing does not adapt well to specification-based
testing. Specification languages commonly use
different standard data structures such as sets.
Testing involving data types can only be concerned
with a conceptual understanding of the data type,
rather than some implementation representation such
as linked lists. However, there may be little or no
adaptation required. Input partitioning, for example, is
a concept perhaps more applicable at the specification
level than at the implementation level. Using
partitioning strategies on implementations usually
requires deriving abstract expressions for conditions
over the input. Such expressions are specifications,

and if they are not already explicit in the specification
they should be easier to derive from a specification.

Clearly, knowledge of the specification notation is
required to extract relevant information such as
condition expressions. Some strategies may be able to
make use of details of the notation in the specification,
particularly any pre-defined operators in the language.
We consider adapting some popular strategies to give
the flavor of using strategies at the specification level.

Partitioning strategies divide the input space into
domains according to some criteria. The most
commonly used criteria are branch conditions using
variables of the input space. Domains of such a
partition are determined by reducing the conditions in
the input expression to disjunctive normal form such
that each disjunctive is disjoint. Each disjunction is a
constraint over the input which defines an input
domain. Other partitions can be just as easily
defined, though not necessarily so easily derived.
Partitioning the input space based only on the input
expression can be a pitfall in specification-based
testing. Some partitioning strategies partition the
input space using more information than contained in
the input expression. An example is cause-effect
mapping. With the cause-effect strategy, input
`causes' are mapped to output effects. In terms of
partitioning, this requires an output partition to be
determined, and then the input partition is based on
the input domains that map to the identified output
domains. This output partition is determined by
reducing the output expression to disjunctive normal
form.

Domain testing [WC80] uses the control flow of a
program to partition its input space. The path
predicates form boundaries of the various input
domains in the program's input space. The strategy
tests for domain errors by checking whether the
domain borders are in the correct position. A major
pre-requisite of domain testing is that the path
predicates have a linear representation in the
program's input space, i.e., if a graph of the input
space is constructed, the path predicates define
domains with linear structures. The dimension of
these structures depends on the number of variables
in the path predicate. Domain testing also assumes
that there is no coincidental correctness, there are
no missing path errors, adjacent domains compute
different functions, the correct border is also linear,
the input space is continuous, and there are no loops
in the code as this greatly increases the complexity
of the path predicates.

The path predicates are easily determined from a
specification by reducing the input expression to
disjunctive normal form. The disjunctive are the path
predicates and represent the domain boundaries. A
much more significant problem with adapting domain
testing to the specification level is finding linear
representations for the path predicates. That is,
finding a way to represent the predicate so that it

Amit Singh1 Dr. Pardeep Goel2

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances and Scholarly Researches in Allied Education
Vol. IV, Issue VII, July-2012, ISSN 2230-7540

forms a linear structure in the input space. It is
common for path predicates to be high level
expressions involving complex data types. In some
cases, a linear representation suggests itself, but there
is no guarantee that a linear representation exists. For
example, sets and set operations defy linear
representation1. It is probably more likely that a linear
representation does not exist it depends largely on the
problem specified. If a linear representation can be
found, however, domain testing is a very appealing
strategy to use. Another consideration is that
specifications commonly use discrete spaces.
Numerically, the naturals and integers serve in most
specifications, and data types are likely to be
represented by discrete spaces if a representation can
be found at all. This is not a problem per se;
continuous input spaces are advantageous because
they allow arbitrarily accurate testing. Testing with
discrete spaces has limitations on accuracy.

Less rigorous strategies are practiced widely in testing.
Here we refer to such old favorites as boundary
testing, testing zero, one, and many occurrences of
some particular phenomenon, and other standard
practices given some knowledge of the system
specifics, data types, and operators. These adapt to
the specification level very easily the only transition
required is working with the notation of the
specification rather than that of the implementation as
is usually done.

CONCLUSION

Our experiments using testing strategies at the
specification level led us to develop two new
specification-based testing strategies. The first,
domain propagation, is an extension of partition
testing. The second, specification mutation, is an
adaptation of the existing implementation-based
mutation testing technique.

REFERENCE

1. Man-yee Chan and Shing-chi Cheung.
Applying white box testing to database
applications. Technical Report HKUST-
CS9901, Hong Kong University of Science and
Technology, Department of Computer
Science, February 1999a.

2. Man-yee Chan and Shing-chi Cheung. Testing
database applications with SQL semantics. In
Proceedings of the 2

nd
 International

Symposium on Cooperative Database
Systems for Advanced Applications, March
1999b.

3. David Chays, Saikat Dan, Phyllis G. Frankl,
Filippos I. Vokolos, and Elaine J. Weyuker. A
framework for testing database applications. In

Proceedings of the 7th International
Symposium on Software Testing and Analysis,
August 2000.

4. David Chays and Yuetang Deng.
Demonstration of AGENDA tool set for testing
relational database applications. In
Proceedings of the International Conference
on Software Engineering, pages 802–803,
May 2003.

5. David Chays, Yuetang Deng, Phyllis G. Frankl,
Saikat Dan, Filippos I. Vokolos, and Elaine J.
Weyuker. AGENDA:

6. A test generator for relational database
applications. Technical Report TR-CIS-2002-
04, Department of Computer and Information
Sciences, Polytechnic University, Brooklyn,
NY, August 2002.

7. B. Choi, A. Mathur, and B. Pattison. PMothra:
Scheduling mutants for execution on a
hypercube. In Proceedings of the Third ACM
SIGSOFT Symposium on Software Testing,
Analysis, and Verficiation, pages 58–65,
December1989.

8. L.A. Clarke. A system to generate test data
symbolically. IEEE Transactions on Software
Engineering, 2(3):215–222, September 1976.

9. Lori A. Clarke, Andy Podgurski, Debra J.
Richardson, and Steven J. Zeil. A
comparison of data flow path selection
criteria. In Proceedings of the 8th
International Conference on Software
Engineering, pages 244–251. IEEE
Computer Society Press, 1985.

10. David M. Cohen, Siddhartha R. Dalal,
Michael L. Fredman, and Gardner C. Patton.
The combinatorial design approach to
automatic test generation. IEEE Software,
13(5):83–87, September 1996.

