

REVIEW ARTICLE

Study of Political Representations:
Diplomatic Missions of Early Indian to

Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,
ISSN 2230-

7540

Journal of Advances and
Scholarly Researches in

Allied Education

Vol. VII, Issue No. XIII,
January-2014, ISSN 2230-

7540

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

QUERY OPTIMIZATION: COST-BASED
OPTIMIZATION

www.ignited.in

Student Name

w
w

w
.i
g

n
it

e
d

.i
n

1

 Journal of Advances and Scholarly Researches in Allied Education
Vol. VII, Issue No. XIII, January-2014, ISSN 2230-7540

Query Optimization: Cost-based Optimization

Deepti Khanna1 Priyanka Jha2 Prof (Dr.) V B Aggarwal3

1
Associate Professor, JIMS

2
Assistant Professor, JIMS

3
Director, JIMS

Abstract – Distributed query processing is fast becoming a reality. With the new emerging applications
such as the grid applications, distributed data processing becomes a complex undertaking due to the
changes coming from both underlying networks and the requirements of grid-enabled databases. Recent
database research has demonstrated that memory access is more and more becoming a significant—if
not the major—cost component of database operations

In this article, we propose a generic technique to create accurate cost functions for database operations.
The method of optimizing the query by choosing a strategy that results in minimum cost i.e. Cost based
Query Optimization. We calculate the cost of executing the different alternatives .The cost of executing a
query include the following components: secondary storage access cost, storage cost, computation cost,
memory usage cost, communication cost.

We identify a few basic memory access patterns and provide cost functions that estimate their access
costs for each level of the memory hierarchy. The cost functions are parameterized to accommodate
various hardware characteristics appropriately. Database processes queries, Processing Selection
Queries, Processing Projection Queries and Eliminating Duplicates, Processing Join Queries: Two plans
have the same cost through Improvement - block nested loops join, indexed nested loops join, sort-
merge join, hash join, Query Plans and Query Optimization for Complex Relational Expression.

Keywords: Cost Function, Linear search, Binary Search.

- X -

INTRODUCTION

Query optimization is a function of many relational
database management systems in which multiple
query plans for satisfying a query are examined and a
good query plan is identified. This may or not be the
absolute best strategy because there are many ways
of doing plans. There is a tradeoff between the amount
of time spent figuring out the best plan and the amount
running the plan. Different qualities of database
management systems have different ways of
balancing these two. Cost based query optimizers
evaluate the resource footprint of various query plans
and use this as the basis for plan selection. Typically
the resources which are cost are CPU path length,
amount of disk buffer space, disk storage service time,
and interconnect usage between units of parallelism.
The set of query plans examined is formed by
examining possible access paths (e.g., primary index
access, secondary index access, full file scan) and
various relational table join techniques (e.g., merge
join, hash join, product join). The search space can
become quite large depending on the complexity of the
SQL query. There are two types of optimization. These
consist of logical optimization which generates a

sequence of relational algebra to solve the query. In
addition there is physical optimization which is used
to determine the means of carrying out each
operation.

The query optimizer is the component of a database
management system that attempts to determine the
most efficient way to execute a query. The optimizer
considers the possible query plans for a given input
query, and attempts to determine which of those
plans will be the most efficient. Cost-based query
optimizers assign an estimated "cost" to each
possible query plan, and choose the plan with the
smallest cost. Costs are used to estimate the runtime
cost of evaluating the query, in terms of the number
of I/O operations required, the CPU requirements,
and other factors determined from the data dictionary.
The set of query plans examined is formed by
examining the possible access paths (e.g. index
scan, sequential scan) and join algorithms (e.g. sort-
merge join, hash join, nested loops). The search
space can become quite large depending on the
complexity of the SQL query.

Student Name

w
w

w
.i
g

n
it

e
d

.i
n

2

 Query Optimization: Cost-based Optimization

Generally, the query optimizer cannot be accessed
directly by users: once queries are submitted to
database server, and parsed by the parser, they are
then passed to the query optimizer where optimization
occurs. However, some database engines allow
guiding the query optimizer with hints

There are many plans that a database management
system (DBMS) can follow to process it and produce
its answer. All plans are equivalent in terms of their
final output but vary in their cost, i.e., the amount of
time that they need to run. What is the plan that needs
the least amount of time?

Such query optimization is absolutely necessary in a
DBMS. The cost difference between two alternatives
can be enormous. For example, consider the following
database schema, which will be used throughout this
article:

emp(name,age,sal,dno)

dept(dno,dname,oor,budget,mgr,ano)

acnt(ano,type,balance,bno)

bank(bno,bname,address)

Further, consider the following very simple SQL query:

select e.name, e.floor from emp e, dept d where
e.dno=d.dno and e.sal>100K and d.dname=’hr’.

Assume the characteristics below for the database
contents, structure, and run-time environment:

Parameter Description Parameter Value

Number of emp pages 20000

Number of emp tuples 100000

Number of emp tuples with sal> 1000K 5

Number of dept pages 10

Number of dept tuples 100

Number of buffer pages 3

Cost of one disk page access 20ms

Consider the following three different plans:

P1 : Through the B+-tree and all tuples of emp that
satisfy the selection on e.sal and d.dname is HR. For
each one, use the hashing index to find the
corresponding dept tuples.

P2 : For each dept page, scan the entire emp relation.
If an emp tuple agrees on the dno and dname
attributes with a tuple on the dept page and satisfies

the selection on e.sal, then the emp-dept tuple pair
appears in the result. Join should be included.

P3: For each dept tuple, scan the entire emp relation
and store all emp-dept tuple pairs.

Then, scan this set of pairs and, for each one, check if
it has the same values in the two dno attributes and
satisfies the selection on e.sal and d.dname is HR.

Optimizing parameters under multiple constraints and
negotiating compromises between different objectives
has a long history in economic problems. Though
simplifying approaches often reduce business
decisions to ‘maximize profits’, common problems
often deal with non-monetary intangibles like product
quality, public image, tradition, corporate identity or
ethics like environmental concerns or safety features.
But apart from mere business problems multi-objective
optimization also plays a role in many areas of
computer science:

• Multi-objective agents negotiate compromises
on behalf of different users or interest groups

• Decision support systems try to integrate
various interests to recommend strategic decisions

• Trade-offs in e-commerce environments e.g.
between price, efficiency and quality of certain
products have to be assessed

• Personal preferences of users requesting a
Web service for a complex task have to be evaluated
to select most appropriate services

Recent advances in computing technology have led to
the production of a new class of computing devices:
the wireless, battery-powered, smart sensor.
Traditional sensors deployed throughout buildings,
labs, and equipment is passive devices that simply
modulate a voltage on the basis of some
environmental parameter. These new sensors are
active, full-fledged computers, capable of not only
sampling real-world phenomena but also filtering,
sharing, and combining sensor readings with each
other and nearby Internet-equipped end points.

The system modules through which it moves have the
following functionality:

¥ The Query Parser checks the validity of the
query and then translates it into an internal form,
usually a relational calculus expression or something
equivalent.

¥ The Query Optimizer examines all algebraic
expressions that are equivalent to the given query and
chooses the one that is estimated to be the cheapest.

¥ The Code Generator or the Interpreter
transforms the access plan generated by the optimizer
into calls to the query processor.

Student Name

w
w

w
.i
g

n
it

e
d

.i
n

3

 Journal of Advances and Scholarly Researches in Allied Education
Vol. VII, Issue No. XIII, January-2014, ISSN 2230-7540

¥ The Query Processor actually executes the
query

The code produced by the Code Generator is stored in
the database and is simply invoked and executed by
the Query Processor whenever control reaches that
query during the program execution (run time). Thus,
independent of the number of times an embedded
query needs to be executed, optimization is not
repeated until database updates make the access plan
invalid (e.g., index deletion) or highly suboptimal (e.g.,
extensive changes in database contents).

The area of query optimization is very large within the
database field. It has been studied in a great variety of
contexts and from many different angles, giving rise to
several diverse solutions in each case.

The purpose of this chapter is to primarily discuss the
core problems in query optimization and their
solutions, and only touch upon the wealth of results
that exist beyond that. More specifically, we
concentrate on optimizing a single at SQL query with
`and' as the only Boolean connective in its qualification
(also known as conjunctive query, select-project-join
query, or nonrecursive Horn clause) in a centralized
relational DBMS, assuming that full knowledge of the
run-time environment exists at compile time.

II. QUERY OPTIMIZER ARCHITECTURE

We provide an abstraction of the query optimization
process in a DBMS. Given a database and a query on
it, several execution plans exist that can be employed
to answer the query. In principle, all the alternatives
need to be considered so that the one with the best
estimated performance is chosen.

An abstraction of the process of generating and testing
these alternatives is shown in Fig, which is essentially
a modular architecture of a query optimizer. Although
one could build an optimizer based on this
architecture, in real systems, the modules shown do
not always have so clear-cut boundaries as in Fig.
Based on Fig, the entire query optimization process
can be seen as having two stages: rewriting and
planning. There is only one module in the first stage,
the Rewriter, whereas all other modules are in the
second stage. The functionality of each of the modules
in Fig is analyzed below.

MODULE FUNCTIONALITY

Rewriter: This module applies transformations to a
given query and produces equivalent queries that are
hopefully more efficient, e.g., replacement of views
with their definition, attending out of nested queries,
etc. The transformations performed by the Rewriter
depend only on the declarative, i.e., static,
characteristics of queries and do not take into
account the actual query costs for the specific DBMS
and database concerned. If the rewriting is known or
assumed to always be beneficial, the original query is
discarded; otherwise, it is sent to the next stage as
well. By the nature of the rewriting transformations,
this stage operates at the declarative level.

Planner: This is the main module of the ordering
stage. It examines all possible execution plans for
each query produced in the previous stage and
selects the overall cheapest one to be used to
generate the answer of the original query. It employs
a search strategy, which examines the space of
execution plans in a particular fashion. This space is
determined by two other modules of the optimizer,
the Algebraic Space and the Method-Structure
Space. For the most part, these two modules and the
search strategy determine the cost, i.e., running time,
of the optimizer itself, which should be as low as
possible. The execution plans examined by the
Planner are compared based on estimates of their
cost so that the cheapest may be chosen. These
costs are derived by the last two modules of the
optimizer, the Cost Model and the Size-Distribution
Estimator.

Algebraic Space: This module determines the action
execution orders that are to be considered by the
Planner for each query sent to it. All such series of
actions produce the same query answer, but usually
differ in performance. They are usually represented in
relational algebra as formulas or in tree form.
Because of the algorithmic nature of the objects
generated by this module and sent to the Planner, the

Student Name

w
w

w
.i
g

n
it

e
d

.i
n

4

 Query Optimization: Cost-based Optimization

overall planning stage is characterized as operating at
the procedural level.

Method-Structure Space: This module determines the
implementation choices that exist for the execution of
each ordered series of actions specified by the
Algebraic Space. This choice is related to the available
join methods for each join. if supporting data structures
are built on the y, if/when duplicates are eliminated,
and other implementation characteristics of this sort,
which are predetermined by the DBMS
implementation.

This choice is also related to the available indices for
accessing each relation, which is determined by the
physical schema of each database stored in its
catalogs. Given an algebraic formula or tree from the
Algebraic Space, this module produces all
corresponding complete execution plans, which
specify the implementation of each algebraic operator
and the use of any indices.

Cost Model: This module specifies the arithmetic
formulas that are used to estimate the cost of
execution plans. For every different join method, for
every different index type access, and in general for
every distinct kind of step that can be found in an
execution plan, there is a formula that gives its cost.
Given the complexity of many of these steps, most of
these formulas are simple approximations of what the
system actually does and are based on certain
assumptions regarding issues like buffer management,
disk-cpu overlap, sequential vs. random I/O, etc. The
most important input parameters to a formula are the
size of the buffer pool used by the corresponding step,
the sizes of relations or indices accessed, and possibly
various distributions of values in these relations. While
the first one is determined by the DBMS for each
query, the other two are estimated by the Size-
Distribution Estimator.

Size-Distribution Estimator: This module specifies how
the sizes (and possibly frequency distributions of
attribute values) of database relations and indices as
well as (sub)query results are estimated. As mentioned
above, these estimates are needed by the Cost Model.

DESCRIPTION FOCUS

Most of the transformations normally performed by this
module are considered an advanced form of query
optimization, and not part of the core (planning)
process. The Method-Structure Space specifies
alternatives regarding join methods, indices, etc.,
which are based on decisions made outside the
development of the query optimizer and do not really
affect much of the rest of it. For the Cost

Model, for each alternative join method, index access,
etc., offered by the Method-Structure Space, either
there is a standard straightforward formula that people
have devised by simple accounting of the
corresponding actions (e.g., the formula for tuple-level

nested loops join) or there are numerous variations of
formulas that people have proposed and used to
approximate these actions (e.g., formulas for finding
the tuples in a relation having a random value in an
attribute). In either case, the derivation of these
formulas is not considered an intrinsic part of the query
optimization field.

ALGEBRAIC SPACE

As mentioned above, a at SQL query corresponds to a
select-project-join query in relational algebra. Typically,
such an algebraic query is represented by a query tree
whose leaves are database relations and non-leaf
nodes are algebraic operators like selections (denoted
by ∂), projections (denoted by ∏), and joins1 (denoted
by ∞). An intermediate node indicates the application
of the corresponding operator on the relations
generated by its children, the result of which is then
sent further up. Thus, the edges of a tree represent
data flow from bottom to top, i.e., from the leaves,
which correspond to data in the database, to the root,
which is the final operator producing the query answer.
Fig gives three examples of query trees for the query
select name, floor from emp, dept where
emp.dno=dept.dno and sal>1000K .

For a complicated query, the number of all query trees
may be enormous. To reduce the size of the space
that the search strategy has to explore, DBMSs
usually restrict the space in several ways. The first
typical restriction deals with selections and projections:

R1 Selections and projections are processed on the y
and almost never generate intermediate relations.
Selections are processed as relations are accessed for
the first time.

Projections are processed as the results of other
operators are generated.

R2 Cross products are never formed, unless the query
itself asks for them. Relations are combined always

Student Name

w
w

w
.i
g

n
it

e
d

.i
n

5

 Journal of Advances and Scholarly Researches in Allied Education
Vol. VII, Issue No. XIII, January-2014, ISSN 2230-7540

through joins in the query. For example, consider the
following query:

Select name, floor, balance from emp, dept, acnt
where emp.dno=dept.dno and dept.ano=acnt.ano

Fig shows the three possible join trees (modulo join
commutativity) that can be used to

Combine the emp, dept, and acnt relations to answer
the query. Of the three trees in the figure, tree T3 has
a cross product, since its lower join involves relations
emp and acnt, which are not 1. Explicitly joined in the
query. Restriction R2 almost always eliminates
suboptimal join trees, due to the large size of the
results typically generated by cross products. The
exceptions are very few and are cases where the
relations forming cross products are extremely small.
Hence, the Algebraic Space module specifies
alternative join trees that involve no cross product.

R3: The inner operand of each join is a database
relation, never an intermediate result.

For example, consider the following query:

Select name, floor, balance, address from emp, dept,
acnt, bank where emp.dno=dept.dno and
dept.ano=acnt.ano and acnt.bno=bank.bno

The typical arguments used are two:

¥ Having original database relations as inners
increases the use of any preexisting indices.

¥ Having intermediate relations as outers allows
sequences of nested loops joins to be executed in a
pipelined fashion

Both index usage and pipelining reduce the cost of join
trees. Moreover, restriction R3 significantly reduces
the number of alternative join trees. Hence, the
Algebraic Space module of the typical query optimizer
only specifies join trees that are left-deep. Summary,
typical query optimizers make restrictions R1, R2, and
R3 to reduce the size of the space they explore.
Hence, unless otherwise noted, our descriptions follow
these restrictions as well.

III. CONCLUSION

The study is being taking into consideration that the
different parameters which is been mentioned in the
objective of my study. It includes both descriptive and
empirical study and the conclusions drawn are having
far reaching implications. On the basis of the study we
had concluded:

 The cost of first_row and all_rows is same in
all two versions of oracle.

 In case of estimated statistics the exact the
match has the different number of rows and bytes.

 In oracle 10g, estimated statistics and
computed statistics shows the different results.

 In oracle 10g, the cost is less than the oracle
9i but slightly greater than that of oracle 8i.

 In case of non-indexed table, CPU time and
elapsed time in oracle 10g is lesser than that of
oracle 8i and oracle 9i but the CPU time is inverse.

 In case of indexed table, CPU and elapsed
time in oracle 8i and oracle 9i is lesser than that of
oracle 10g.

 In case of bitmapped indexed table in oracle
9i, elapsed time is lesser than that of normal indexed
table but the CPU time is inverse.

REFERENCES

1. Ioannidis, Yannis (March 1996). "Query
optimization". ACM Computing Surveys 28 (1): 121–
123. doi:10.1145/234313.234367.
http://citeseer.ist.psu.edu/487912.html.

2. Selinger, P. G.; Astrahan, M. M.; Chamberlin,
D. D.; Lorie, R. A.; Price, T. G. (1979), "Access Path
Selection in a Relational Database Management
System", Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data,
pp. 23-34, doi:10.1145/582095.582099

3. Chaudhuri, Surajit (1998). "An Overview of
Query Optimization in Relational Systems".
Proceedings of the ACM Symposium on Principles of
Database Systems: pages 34–43.
doi:10.1145/275487.275492.

4. Ioannidis, Yannis (March 1996). "Query
optimization". ACM Computing Surveys 28 (1): 121–
123. doi:10.1145/234313.234367.
http://citeseer.ist.psu.edu/487912.html.

5. Selinger, P. Ge.; Astrahan, M. M.;
Chamberlin, D. D.; Lorie, R. A.; Price, T. G. (1979),
"Access Path Selection in a Relational Database
Management System", Proceedings of the 1979 ACM

http://citeseer.ist.psu.edu/487912.html
http://citeseer.ist.psu.edu/487912.html
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F234313.234367
http://citeseer.ist.psu.edu/487912.html
http://en.wikipedia.org/wiki/Patricia_Selinger
http://en.wikipedia.org/wiki/Donald_D._Chamberlin
http://en.wikipedia.org/wiki/Donald_D._Chamberlin
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F582095.582099

Student Name

w
w

w
.i
g

n
it

e
d

.i
n

6

 Query Optimization: Cost-based Optimization

SIGMOD International Conference on Management of
Data, pp. 23-34, doi:10.1145/582095.582099

6. [DB01] Desai, b c, An Introduction to database
system, 2000

7. [EN01] Elmasri, E and Navathe, Fundamental
of Database System, 2004

8. [AE01] Aronoff, eyal,et, Oracle 8 Advance
Tuning and Administration, Oracle press.

9. http://www.oracle.com

10. http://www.dba-oracle.com/art-otn-cbo.htm

11. http://www.oracle-base.com

12. http://www.courses.csus.edu

13. http://whitepapers.techrepublic.com

http://www.oracle.com/
http://www.oracle-base.com/
http://www.courses.csus.edu/
http://whitepapers.techrepublic.com/

