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Abstract — We aim at the circle fre = GG =1 ¢ 5 o are separate odd primes, both pn and q are a

primitive root.. Explicit terminology for the entire ©W+1ln+2Z FEarly idempotents are acquired,
s n -— . . . . .

d = ged@(P").4(@). P 1@ =1 pimensions and distances created by polynomials are discussed as well as

minimum cyclic length codes png over GF(©),
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INTRODUCATION

Let GF(£) pe a field of prime order & ¢, odd. Let ™ =1
be an integer with&ad(e.my =1, Let
Rm = GF()[x]/(x™ — 1), Minimum m length cyclic codes
GF(€) are ideals of the ring F= generated by the
primitive idempotents. Arora and Pruthi [1,5] obtained
the primitive idempotents in Rm for m=2.4.p" and 2¢"
where p is an odd prime and * The original root mod
m. Pruthi [6] had a few idempotents R2". n =>3. A In
both the first-name and lowly cyclic codes Sharma,
G.K. Bakshi, V.C. Madhu Raka and Dumir [7]
include R2", n = 3. Madhu Raka and G.K. Bakshi [2]
minimum cyclic duration codes were also obtained P"9,
q are various odd primes where p is, © is a primitive
root mod P" and q both and £4@(®").¢@) =2 Manju
Pruthi and Ranjeet Singh [8] The initial idempotents
were contained in the ring Retam = GF(OX)/( 7" —1)
wherever P%f Are different weird benefits and

(¢(pn)~¢(qm)) =2, O(f)Pn =¢(p”)/2 and O(f)qm =¢(qm)/2

In this paper, When we glance at the situation ™= "4,
g is a primitive root of the two modes, where p is a

particular odd primes p" and mod g and
ng(¢(P”).¢(Q))=d.d22, with PT(Q—I)_ C|ear|y’ d is

even. (P=54=17£=3,d=4 i5 gne such sequence
for every n.) The primitive idempotents (d + 1) n + 2
are specifically represented in the Fr's There was a
mistake (see Section 4). We discuss in this section the
dimension, polynomials created and the minimum
distance from the minimum cyclic codes of pnq

length GF(€) This complements the findings of G.K.
The cases D = 2 consider Bakshi and Madhu Raka[2].

PRIMITIVE IDEMPOTENTS IN GF(O[x1/(x?"9 1)

Consider Mac Williams and Sloane
[Theoremaccompanying ]'s generalisation in the non-
binary case

For 0<s<m—1,let Co={s,se.s¢% ....s¢™ 7"} \where

ms is such a small positive integer ¢ =5 (mod mi
Be the s-containing cyclotomic coset. If a is an early
unification mth in an extension field C¢F(®), then the
polynomial ~ M"® =[lcx-2" s the minimal
polynomial of ¢ over GF(®), Let s pe the minimal

=1

ideal in Rm generated by *"* and be the
primitive idempotent of “#s \We realise that then.

doix)

1 ifjeCs,
te(a!) = s ;
Sl i TS o
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tefa! Ja ™" = L ) anala £k o/ = me,.
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In spite of this (2.1),
1 -1 vy =il — 1 ~ij

Recall that a decreased modulo ¢(m) residue scheme
consists of a collection of a1,a2,...,ap(m) &d(@.m) =1
and “#e (mod m) for all L) 1<i.j<@m), i#]
The order of modulo m is the least positive integer h
such that ©"=1 (mod m). If "=%M The primitive
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root modulo m is then renamed. The primitive roots
mod m only occur where it's well-known

m=2.4,p°.20° \where p is an odd prime.

We took things for granted P-9-¢ Are different weird

benefits, # =1is an integer, an early root mod * and an
n - } .
original root mod g, £4@ P, ¢@)=d =2 pig—1)

e . -
Lemma 1: If ~ is an early root mod ¥, then * is an
early root mod ¥ as well, for everyone 9= i=n—1

Proof: Madhu Raka and G.K. Bakshi [2, Lemma 1].

- . ¢

Lemma 2: Let p, g be distinct odd primes. Let =~ be an

integer such that &4 P"0 =1t pelongs to exponent
n

r, s,t modulo P4 and "9 respectively, then £ ="mi7:1,

Proof: As ‘=1 (mod p"q) e get ¢=1 (moed p") gnq
f=1imod g} g9 that Tl and 5't. Consequently,
lem[r.s] 11, On the other hand, let 9 =28w(T.S) Then
¢'=1 (mod p") gives ¢7 =1 (mod p"), Similarly, =1
(mod q) gives £¢ =1 (mod q). But p, q are distinct

primes, so we get ¢ 7 =1 (mod p"a) However * belongs

n
to exponent t mod P9 Therefore,
t | 5. Also rs =gcd(r, s) xlcm([r,s] =d x lcm[r, s], i.e. t | lcm[r,s]

. We thus conclude that t =lcm[r.s]

Corollary 1: If is a primitive root mod P" and also a
olp"Q)

primitive root mod q, then ‘ belongs to exponent ¢
n

Proof: By Lemma 2.

Corollary 2: Let P-9-¢ pe distinct primes, "= 1 be an

be a primitive root mod P" as well as a
. Then

a7 for every FO= En -1,

. £
integer,
primitive root mod g, where ¢ m e = prig-

o1

the order of  mod 7"~
Proof: By Lemma 1 and Corollary 1.

Lemma 3: Let P-9:¢ pe distinct odd primes, such that

= L. S
gad(¢(p).¢(@) =d gnd ° s a primitive root mod p as
well as a primitive root mod g. Then there exists an
integer O ! <@ < pq. &d@.pa) = 1 gych that a is primitive
root mod p and order of a is “mod qg.

Proof: Consider the complete residue systems
Sp={0.] ..... p~-1].$.;=l0.l.....q~- ”and

Spg=1{0.1.2.....pq—1} mod p, mod q and mod pq
respectively. We define the Cartesian Product
SpxSq=r.s) r€5p, s€5%)3nd a map #:Spg— Sp x Sg

given by #@ =5 where a = r (mod p) and a = s
(mod Q). It is easy to see that the arithmetic has a
reverse (since 0O is bijective) Alto retains arithmetic.
Since &cd(p.q) =1, 3 integers u, v such that Pu+qv=1
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Given an ordered pair ) €5p %S¢, there exists a
unique = %m such that @ = (spu +rqv) (mod pq). Then
O(a)=(r.s),

Let us now find an integer a such that ' <@ =¥ and a
is a primitive root modulo p and order of a is “imodulo

g, where d=2gd@(p).6@). Now ° is both a primitive
root mod p and an early root mod g. Choose m1 such
that ™ is also an early root mod p. Indeed choose m1
satisfying ' < ®: = #(p) and 8d(m1,¢(p)) =1 Choose m2
such that "™ has order “#* mod g. Indeed choose
m2 satisfying ! =M <@ and &d(dmz.¢(@) =d | et
4% 5m pe such that @ = (€™1qv + £9" pu) (mod pq). Then,
a=t™ (mod p) and hence a is a primitive root mod p.

Also a= £ (mod q) so that order of a is “ mod g.

Clearly, &cdia. pa) =1,

Remark 1: (i) We can also find an integer in the above
lemma, by modifying p and q@ 1 <@ <Pdsych that
8ed(@,pg) =1 and a is primitive root mod g and order of
ais “' mod p where 4 =8¢ (). 4(@)

(i) M=mz=1,a=£qv+Epu (mod pq) is one of the
possible values of a.

Lemma 4: Let a bean integer with '<#<rM and

gedla, pg) =1 gych that a is a primitive root mod p and
@iq)

orderofais ¢ mod q OR ais a primitive root mod q
and order of ais © mod p, where d=gcd(¢(p).$(q)),
then @-0°.@% ... ¢S where S=(1..8, ... o i |

Proof: Assume that @ €S, for some I 1 =i <d Then

| : o(pq)
al et (mod pq), for some L Osk=Sg" However,

a=E"Mqv+eTpu (mod pg). Thus, £™ =6 (mod p)
and ™ =% (mod g), showing that k= im1 (mod ¢(p))
and k=idmz (mod ¢(@) g ¢ divides both ¢(p) and
¢(q), we obtain that *=im =idm:=0(mod d). In

particular, ™ =% (mod d), which is a contradiction as
gedimy, ¢pip)=1lgng 1 si=d

There exists an
1and a,a® a~'e¢s

Lemma 5:
a, 1 <a < pggedia, pgl)

1
I

integer
where

S=(1,¢8,.,. &

Proof: In view of Lemma 4, it is sufficient to consider
ged(a. £) ¢ ged(@.©)=1 we are through. If not, then
ged(a. £) = ¢, as € js a prime. Write a=£'b, where £15.
Then b also satisfies ' <P <Pd, gdibpity=1 and
bbb e s For, if D'€S for somei, 1<i<d, b' =X
(mod pq) implies that @ €5, which contradicts Lemma
4.

Lemma 6: A set integer is satisfactory

any kil<i<d gpqg d . Further, for this

fixed aand any J:0<J <1 the set
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are #(" ' Co-prime elements of pq. It is enough to
demonstrate that both are incongruous in pairs # ‘7.
Let altk =a" ¢t (mod p"Iq) with
DE<r<i<dand 02k, t < Then
ai—" = gtk (mod pn—fq) Q|)|;‘n )Iies that @ = (mOd pQ)
s=t—k (mod =F%)  Therefore, and

=T Therefore, we get
\\'I!::l"":

ep™1g)
5

where et

0=i-r=d  Consequently,

=" (mod p”"rn 0 kot

where and the order of

¢ - ¢ k=t
mod ¥ 9 is ~ d -, giving us

SOME RESULTS

To analyze idempotents,
necessary:

the following results are

Lemma 9: If B is a primitive p"th root of unity for an
odd prime p and k a positive integer, ¢F(€), then

ky_
¢(ilﬁl5_{_1 ifk=1,
= o k=2
¢

where ™ is a primitive root mod p".

Proof: See Bakshi G. K. and Raka Madhu [2, Lemma
4].

Let a be a fixed primitive P"9t root of unity in some
extension field of GF(f), For Osisn—lo<i<n-1
O<k=<d— |, define

k i
A; ) = Z P
seCy
(k)¢

(k) (k)

As Coey = Ca, (A;7)" = A;", so that each A;" € GF(£).
Lemma 10. For each 0 sisn—1
EA“Q io ifi<n-—
= n—1 zps o
o p ifi=n-—1.
Proof: For any k and i
0<k<d—-1,0<ig<n-1, akp'nl"5=akp"t‘[ (mod pnq) if
r
and only if E=t"(mod p"9) it gpg only if

) sp" ey
s=t(mod Z5=5) Therefore,

s€ L"Q =0
, RS U R
o(p"g) Y [y
e
fPU) —‘q, \ sml)
sy 1
sle
L)
— pl Z ﬂa [} )
se=l)
g=a" . Lo n-gth .
Where is a primitive F root of unity.
Therefore,
1.4 2554 g at e =5 atatle [ S il

is a reduced residue system mod "7, the sum on the

R.H.S.is

y [
= ( Bt - Z pPt —

r=1 =1 =

P
A 4 ﬁx':z)
1 r=1

As P77 LA A1 A7 the first three geometric
series are zero. If £ =1 je. if 171 =1 the sum of

the last series also vanishes If i=n—1 the last
series is AP =1, Thus, 2 YA =0 for i=n Tand 0
for i#n—1,
Lemma 11: For each k, hO0<kh<d—1 and
1] :':'-_'I..f"‘E:'I'I,
-1 ifi+j=n, j=n,

Z aa"p‘sz _—Wp;ﬂ) ifi+j=n, j<n-—1,

S€Cohpi o :':k’ ifi+j<n—1.

Proof: For J—mi+jzn gnd Cee =L
required sum (using Lemma 9) is

w = 5o that the

i ¢(g)—1

{ ! l‘n s s
2 : a®P's — 2 : ¢ 2 :ﬂi
seCpn 5=0

A s

-

4 — ot . S . .
Where # =@ is a primitive gth root of unity, if

i+Jj=n_ Therefore, £ = £ ifand only if £=¢ (mod
q), Only if s = r (mod ¢(q)) is accessible. The sum is
then equivalent to Lemma 9.

¢0"lg) (NS i) _ 9@
d-(q) d

s=0
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Also,

hak) ‘vlg
A = Z af

a "I“" -
- &"'%1 ‘_.d.__ Z '.‘-" = p't Z g
s=0

@lp &L s}
L RR Y]

. LAL
From, The lemma sum is the same # "/ | The lemma
proves this.

Lemma 12: For 0sksd—1 0<j<n-10<i<n

k ¢(p™ ) ifi+j>=n,
Z a®P's — Z PP — -—p" ifi+j=n-—1,

SEC”Jq Secpfq 0 lfl +_’ é n—2.

Proof: Let r be either q or a* for some k, 0<sk<d—1,

The sum expected is the same as

pl.0 ifn—(@i+j)>2,

$(p"-i-1)—1
Ip"v(—l) ifn—(Gi+j)=1,

b Sl e
s=0
_[o ifi+j<n—2,
—pt ifi+j=n—1.
This completes the lemma proof.

Lemma13: For 0sisn—10<j<n0<h<d-1

$(q) ifi+j>n, j=n,

o(p"Iq) ips . . -
Z P9 — —P—q—d ifi+j=2n, j<n-—1,
S€Cnp QD jfit+j=n-1,
0 ifi+j<n—2.
€ Cpr

Proof: For /=" as "« ™' the required sum is

e p=1 ¢t 1+
Ea-.L‘: al ¥ =34 8 =¢"0', where B= af "0 = 1‘ For
i=n—1the sumis
.——'7.1 i P oip* =1 4 pcpt 1)1
Fiatee. T gt 000 T e TSN

d-¢(pr—i) = d -

Where #=¢"""is a primitive ©* ' root of unity for
i+jsn—13andif i+i=7 then B = 1. Therefore, the

sum is the same“ ™" ' if i +j n. If (+i=7°=1 The sum
becomes then by Lemma 9

i‘l’(p"?‘?”_l 0

o(qQ)p Z e
— ﬁ —
d s=0

ifi4 j<n—2;
—2@P ifitj=n-1,

The lemma proves this
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