

REVIEW ARTICLE

A STUDY ON MINIMAL CYCLIC CODES OF LENGTH P^NQ

Journal of Advances and Scholarly Researches in Allied Education

Vol. VII, Issue No. XIII, January-2014, ISSN 2230-7540

AN INTERNATIONALLY INDEXED PEER REVIEWED & REFEREED JOURNAL

www.ignited.in

A Study on Minimal Cyclic Codes of Length pⁿq

Manjeet Singh¹* Dr. Pradeep Goel²

¹ Research Scholar, Department of Mathematics, Sai Nath University, Ranchi, Jharkhand

² Professor, M. M. College, Fatehabad, Haryana

Abstract – We aim at the circle $R_{p^{e_q}} = GF(\ell)[x]/(x^{p^{e_q}} - 1)$, If p, q, are separate odd primes, both pn and q are a primitive root. Explicit terminology for the entire (d+1)n+2 Early idempotents are acquired, $d = gcd(\phi(p^n), \phi(q)), p \nmid (q-1)$ Dimensions and distances created by polynomials are discussed as well as minimum cyclic length codes pnq over $GF(\ell)$.

Key Words: Minimal Cyclic Codes, Cyclotomic Cosets

INTRODUCATION

Let $GF(\ell)$ be a field of prime order ℓ , ℓ , odd. Let $m \ge 1$ an integer with $gcd(\ell, m) = 1$ be l et $R_m = GF(\ell)[x]/(x^m - 1)$. Minimum m length cyclic codes $GF(\ell)$ are ideals of the ring \mathbb{R}_m generated by the primitive idempotents. Arora and Pruthi [1,5] obtained the primitive idempotents in R_m for $m = 2, 4, p^n$ and $2p^n$ where p is an odd prime and i The original root mod m. Pruthi [6] had a few idempotents R_{2^n} , $n \ge 3$. A. In both the first-name and lowly cyclic codes Sharma, G.K. Bakshi, V.C. Madhu Raka and Dumir [7] include R_{2^n} , $n \ge 3$. Madhu Raka and G.K. Bakshi [2] minimum cyclic duration codes were also obtained $p^n q$, q are various odd primes where p is, ^{*l*} is a primitive root mod p^n and q both and $gcd(\phi(p^n), \phi(q)) = 2$. Manju Pruthi and Ranjeet Singh [8] The initial idempotents were contained in the ring $R_{p^nq^m} = GF(\ell)[x]/(x^{p^nq^m}-1)$. wherever p,q, e Are different weird benefits and $(\phi(p^n), \phi(q^m)) = 2, o(\ell)_{p^n} = \phi(p^n)/2 \text{ and } o(\ell)_{q^m} = \phi(q^m)/2$

In this paper, When we glance at the situation $m = p^n q$, q is a primitive root of the two modes, where p is a particular odd primes p^n and mod q and $gcd(\phi(p^n), \phi(q)) = d, d \ge 2$, with $p \nmid (q-1)$. Clearly, d is even. $(p = 5, q = 17, \ell = 3, d = 4)$ is one such sequence for every n.) The primitive idempotents (d + 1) n + 2are specifically represented in the R_{p^nq} There was a mistake (see Section 4). We discuss in this section the dimension, polynomials created and the minimum distance from the minimum cyclic codes of pnq length $GF(\ell)$. This complements the findings of G.K. The cases D = 2 consider Bakshi and Madhu Raka[2].

PRIMITIVE IDEMPOTENTS IN $GF(\ell)[x]/(x^{p^nq}-1)$

Consider Mac Williams and Sloane [Theoremaccompanying]'s generalisation in the nonbinary case

For $0 \le s \le m-1$, let $C_s = \{s, s\ell, s\ell^2, \dots, s\ell^{m_s-1}\}$, where ms is such a small positive integer $s\ell^{m_s} = s \pmod{m}$, Be the s-containing cyclotomic coset. If α is an early unification mth in an extension field $GF(\ell)$, then the polynomial $M^{(s)}(x) = \prod_{i \in C_r} (x - \alpha^i)$ is the minimal polynomial of α^s over $GF(\ell)$. Let \mathscr{M}_s be the minimal ideal in R_m generated by $\frac{x^m-1}{M^{(m)}(x)}$ and $\theta_s(x)$ be the primitive idempotent of \mathscr{M}_s . We realise that then.

$$\theta_s(\alpha^j) = \begin{cases} 1 & \text{if } j \in C_s, \\ 0 & \text{if } j \notin C_s. \end{cases}$$

Theorem:

$$\theta_{s}(x) = \sum_{i=0}^{m-1} \varepsilon_{i} x^{i}$$
 where $\varepsilon_{i} = \frac{1}{m} \sum_{j \in C_{s}} \alpha^{-ij}$ for all $i \ge 0$.

Proof:

$$\sum_{i=0}^{m-1} \theta_s(\alpha^i) \alpha^{-ij} = \sum_{j=0}^{m-1} \sum_{k=0}^{m-1} \varepsilon_k \alpha^{jk} \alpha^{-ij} = \sum_{k=0}^{m-1} \varepsilon_k \sum_{j=0}^{m-1} \alpha^{j(k-i)} = m\varepsilon_i.$$

In spite of this (2.1),

$$\varepsilon_i = \frac{1}{m} \sum_{j=0}^{m-1} \theta_s(\alpha^j) \alpha^{-ij} = \frac{1}{m} \sum_{j \in C_s} \alpha^{-ij}$$

Recall that a decreased modulo $\varphi(m)$ residue scheme consists of a collection of a1,a2,...,a $\varphi(m) \frac{gcd(a_i, m) = 1}{and}$ and $a_i \neq a_j \pmod{m}$ for all $i, j, 1 \leq i, j \leq \varphi(m), i \neq j$. The order of modulo m is the least positive integer h such that $\ell^h \equiv 1 \pmod{m}$. If $h = \varphi(m)$, The primitive

root modulo m is then renamed. The primitive roots mod m only occur where it's well-known $m = 2, 4, p^e, 2p^e$ where p is an odd prime.

We took things for granted p, q, ℓ Are different weird benefits, $n \ge 1$ is an integer, an early root mod p^n and an original root mod q, $gcd(\phi(p^n), \phi(q)) = d \ge 2, p \nmid (q-1)$

Lemma 1: If ℓ is an early root mod p^n , then ℓ is an early root mod p^{n-j} as well, for everyone $j, 0 \le j \le n-1$.

Proof: Madhu Raka and G.K. Bakshi [2, Lemma 1].

Lemma 2: Let p, q be distinct odd primes. Let ℓ be an integer such that $gcd(\ell, p^nq) = 1$. If belongs to exponent r, s,t modulo p^{n} , q and $p^{n}q$ respectively, then t = lcm[r, s].

Proof: As $\ell^t \equiv 1 \pmod{p^a q}$, we get $\ell^t \equiv 1 \pmod{p^n}$ and $\ell^{t} = 1 \pmod{q}$ so that $r \mid t$ and $s \mid t$ Consequently, lcm[r,s] t. On the other hand, let d = gcd(r,s). Then $\ell^r \equiv 1 \pmod{p^n}$ gives $\ell^{\frac{rs}{d}} \equiv 1 \pmod{p^n}$. Similarly, $\ell^s \equiv 1$ (mod q) gives $\ell^{\frac{sr}{d}} \equiv 1$ (mod q). But p, q are distinct primes, so we get $\ell^{\frac{\ell}{q}} = 1 \pmod{p^{\pi}q}$. However ℓ belongs $p^n q$ exponent Therefore. to mod t $t \mid \frac{rs}{d}$. Also $rs = gcd(r, s) \times lcm[r, s] = d \times lcm[r, s]$, i.e. $t \mid lcm[r, s]$. We thus conclude that t = lcm[r, s]

Corollary 1: If is a primitive root mod p^n and also a primitive root mod q, then ℓ belongs to exponent $\frac{\phi(p^*q)}{d}$ mod $p^n q$, where $d = gcd(\phi(p^n), \phi(q))$.

Proof: By Lemma 2.

Corollary 2: Let p, q, ℓ be distinct primes, $n \ge 1$ be an integer, $^{\ell}$ be a primitive root mod p^n as well as a primitive root mod q, where $p^{d(\phi(p^n), \phi(q)) = d, p \neq (q-1)}$. Then the order of $\ell \mod p^{n-j}q$ is $\frac{\varphi(p^{n-j}q)}{d}$ for every $j, 0 \le j \le n-1$.

Proof: By Lemma 1 and Corollary 1.

Lemma 3: Let p,q,ℓ be distinct odd primes, such that $gcd(\phi(p),\phi(q)) = d$ and ℓ is a primitive root mod p as well as a primitive root mod q. Then there exists an integer a, 1 < a < pq, gcd(a, pq) = 1 such that a is primitive root mod p and order of a is mod q.

Proof: Consider the complete residue systems $S_p = \{0, 1, \dots, p-1\}, S_q = \{0, 1, \dots, q-1\}$ and

 $S_{pq} = \{0, 1, 2, \dots, pq-1\} \mod p, \mod q \text{ and } \mod pq$ respectively. We define the Cartesian Product $S_p \times S_q = \{(r, s); r \in S_p, s \in S_q\}$ and a map $\theta : S_{pq} \to S_p \times S_q$ given by $\theta(a) = (r, s)$ where $a \equiv r \pmod{p}$ and $a \equiv s$ (mod q). It is easy to see that the arithmetic has a reverse (since θ is bijective) Alto retains arithmetic. Since gcd(p,q) = 1, \exists integers u, v such that pu + qv = 1.

Manjeet Singh¹* Dr. Pradeep Goel²

Given an ordered pair $(r, s) \in S_p \times S_q$, there exists a unique $a \in S_{PM}$ such that $a \equiv (spu + rqv) \pmod{pq}$. Then $\theta(a) = (r, s)$

Let us now find an integer a such that 1 < a < pq and a is a primitive root modulo p and order of a is $\frac{p(q)}{d}$ modulo q, where $d = gcd(\phi(p), \phi(q))$. Now ℓ is both a primitive root mod p and an early root mod q. Choose m1 such that ℓ^{m_1} is also an early root mod p. Indeed choose m1 satisfying $1 \le m_1 < \phi(p)$ and $gcd(m_1, \phi(p)) = 1$. Choose m2 such that ℓ^{dm_2} has order $\frac{\phi(q)}{d} \mod q$. Indeed choose m2 satisfying $1 \le m_2 < \phi(q)$ and $gcd(dm_2, \phi(q)) = d$. Let $a \in S_{pq}$ be such that $a \equiv (\ell^{m_1}qv + \ell^{dm_2}pu) \pmod{pq}$. Then, $a \equiv \ell^{m_1}$ (mod p) and hence a is a primitive root mod p. Also $a = \ell^{dm_2} \pmod{q}$ so that order of a is $\frac{\phi(q)}{d} \mod q$. Clearly, gcd(a, pq) = 1

Remark 1: (i) We can also find an integer in the above lemma, by modifying p and $q^{a, 1} < \overline{a} < pq$ such that gcd(a, pq) = 1 and a is primitive root mod q and order of a is $\frac{\phi(p)}{d}$ mod p where $d = gcd(\phi(p), \phi(q))$

(ii) $m_1 = m_2 = 1$, $a \equiv \ell q v + \ell^d p u \pmod{pq}$ is one of the possible values of a.

Lemma 4: Let a bean integer with 1 < a < pq and gcd(a, pq) = 1 such that a is a primitive root mod p and order of a is $\frac{\phi(q)}{d}$ mod q OR a is a primitive root mod q and order of a is $\frac{\phi(p)}{d}$ mod p, where $d = gcd(\phi(p), \phi(q))$, then $a, a^2, a^3, \dots, a^{d-1} \notin S$ where $S = \{1, \ell, \ell^2, \dots, \ell^{\frac{d(pq)}{d}-1}\}$.

Proof: Assume that $a^i \in S$, for some $i, 1 \leq i < d$. Then $a^i = \ell^k$ (mod pq), for some $k, 0 \leq k < \frac{\phi(pq)}{d}$. However, $a \equiv \ell^{m_1} q v + \ell^{dm_2} p u \pmod{pq}$. Thus, $\ell^{im_1} \equiv \ell^k \pmod{p}$ and $\ell^{idm_2} \equiv \ell^k \pmod{q}$, showing that $k \equiv im_1 \pmod{\phi(p)}$ and $k \equiv idm_2 \pmod{\phi(q)}$. As d divides both $\phi(p)$ and $\varphi(q)$, we obtain that $k \equiv im_1 \equiv idm_2 \equiv 0 \pmod{d}$. In particular, $im_1 \equiv 0 \pmod{d}$, which is a contradiction as $gcd(m_1, \phi(p)) = 1$ and $1 \le i < d$

Lemma 5: There exists integer an $a, 1 < a < pq gcd(a, pq\ell) = 1$ and $a, a^2, ..., a^{d-1} \notin S$ where $S = \{1, \ell, \ell^2, \dots, \ell^{\frac{Q(DQ)}{T}-1}\}$

Proof: In view of Lemma 4, it is sufficient to consider $gcd(a, \ell)$. If $gcd(a, \ell) = 1$, we are through. If not, then $gcd(a, \ell) = \ell$, as ℓ is a prime. Write $a = \ell^r b$, where $\ell \nmid b$. Then b also satisfies 1 < b < pq, $gcd(b, pq\ell) = 1$ and $b, b^2, \dots, b^{d-1} \notin S$. For, if $b^i \in S$ for some i, $1 \leq i < d, b^i \equiv \ell^k$ (mod pq) implies that $a^{t} \in S$, which contradicts Lemma 4

Lemma 6: A set integer is satisfactory $1 < a < pq, gcd(a, pq\ell) = 1$ and $a^i \neq \ell^k \pmod{pq}$ for any $i, k; 1 \leq i < d$ and $0 \leq k < \frac{\phi(pq)}{d}$. Further, for this fixed a and any $j, 0 \le j < n$, the set

Journal of Advances and Scholarly Researches in Allied Education Vol. VII, Issue No. XIII, January-2014, ISSN 2230-7540

$$\{1, \ell, \dots, \ell^{\frac{\phi(p^{n-j}q)}{d}-1}, a, a\ell, \dots, a\ell^{\frac{\phi(p^{n-j}q)}{d}-1}, \dots, a^{d-1}, a^{d-1}\ell, \dots, a^{d-1}, a^{d-1}\ell, \dots, a^{d-1}, a^{d-1}\ell, \dots, a^{d-1}, a^{d-1}\ell, \dots, a^{d-1}, a^{d-1}, \dots, a^{d-1}, a^{d-1}, \dots, a^{d-1}, \dots, a^{d-1}, a^{d-1}, \dots, a^{d-1}$$

Proof: With a as in Lemma 5,

$$\{1, \ell, \dots, \ell^{\frac{\phi(p^n - J_q)}{d} - 1}, a, a\ell, \dots, a\ell^{\frac{\phi(p^n - J_q)}{d} - 1}, \dots, a^{d-1}, a^{d-1}\ell, \dots, a^{d}\}$$

are $\phi(p^{n-j}q)$ Co-prime elements of pq. It is enough to demonstrate that both are incongruous in pairs $p^{n-j}q$. Let $a^i\ell^k \equiv a^r\ell^t \pmod{p^{n-j}q}$ with $0 \leq r \leq i < d$ and $0 \leq k, t < \frac{\phi(p^{n-j}q)}{d}$. Then $a^{i-r} \equiv \ell^{t-k} \pmod{p^{n-j}q}$ implies that $a^{i-r} \equiv \ell^s \pmod{pq}$ where $s \equiv t-k \pmod{\frac{\phi(p(q)}{d}}$. Therefore, $a^{i-r} \in s$ and $0 \leq i-r < d$. Consequently, i=r. Therefore, we get $\ell^k = \ell^i \pmod{p^{n-j}q}$, where $0 \leq k, t < \frac{\phi(p^{n-j}q)}{d}$ and the order of $\ell \mod p^{n-j}q$ is $\frac{\phi(p^{n-j}q)}{d}$, giving us k = t.

SOME RESULTS

To analyze idempotents, the following results are necessary:

Lemma 9: If β is a primitive p^kth root of unity for an odd prime p and k a positive integer, $GF(\ell)$, then

$$\sum_{s=0}^{\phi(p^k)-1} \beta^{\ell^s} = \begin{cases} -1 & \text{if } k = 1, \\ 0 & \text{if } k \ge 2, \end{cases}$$

where ℓ is a primitive root mod p^k.

Proof: See Bakshi G. K. and Raka Madhu [2, Lemma 4].

Let α be a fixed primitive $p^n q \text{th}$ root of unity in some extension field of $GF(\ell)$. For $0 \le i \le n-1, 0 \le i \le n-1, 0 \le k \le d-1$, define

$$A_i^{(k)} = \sum_{s \in C_{a^k}} \alpha^{p^i s}$$

As
$$C_{a^k\ell} = C_{a^k}$$
, $(A_i^{(k)})^{\ell} = A_i^{(k)}$, so that each $A_i^{(k)} \in GF(\ell)$.

Lemma 10. For each $0 \leq i \leq n-1$,

$$\sum_{k=0}^{d-1} A_i^{(k)} = \begin{cases} 0 & \text{if } i \le n-2, \\ p^{n-1} & \text{if } i = n-1. \end{cases}$$

Proof: For any k and i, $0 \le k \le d-1, \ 0 \le i \le n-1, \ a^k p^i \ell^s \equiv a^k p^i \ell^t \pmod{pnq}$ if and only if $\ell^s \equiv \ell^t \pmod{p^{n-i}q}$ if and only if $s \equiv t \pmod{\frac{\phi(p^{n-i}q)}{d}}$. Therefore,

Where $\beta = \alpha^{p^{n}}$ is a primitive $p^{n-i}qth$ root of unity. Therefore,

$$\{1, \ell, \dots, \ell^{\frac{d+p^{d-j}q}{d}-1}, a, q\ell, \dots, a\ell^{\frac{d+p^{d-j}q}{d}-1}, \dots, a^{d-1}, a^{d-1}\ell, \dots, a^{d-1}\ell^{\frac{d+p^{d-j}q}{d}-1}\}$$

is a reduced residue system mod p^{n-tq} , the sum on the R.H.S. is

$$\begin{split} p^{i} & \sum_{\substack{1 \leqslant i \leqslant p^{p-i}q \\ grd(s, p^{n-i}q) = 1}} \beta^{x} = p^{i} \bigg(\sum_{t=1}^{p^{n-i}q} \beta^{t} - \sum_{\substack{t=1 \\ p \mid t}}^{p^{n-i}q} \beta^{t} - \sum_{\substack{t=1 \\ p \mid t}}^{p^{n-i}q} \beta^{t} + \sum_{\substack{t=1 \\ p \mid t}}^{p^{n-i}q} \beta^{t} \bigg) \\ &= p^{i} \bigg(\sum_{t=1}^{p^{n-i}q} \beta^{t} - \sum_{t=1}^{p^{n-i-1}q} \beta^{pt} - \sum_{t=1}^{p^{n-i}q} \beta^{qt} + \sum_{t=1}^{p^{n-i-1}} \beta^{pqt} \bigg) \end{split}$$

As $\beta \neq 1$, $\beta^p \neq 1$, $\beta^q \neq 1$, the first three geometric series are zero. If $\beta^{pq} \neq 1$, i.e. if $i \neq (n-1)$, the sum of the last series also vanishes. If i = n - 1, the last series is $\beta^{pq} = 1$. Thus, $\sum_{k=0}^{d-1} A_i^{(k)} = p^{n-1}$ for i = n - 1 and 0 for $i \neq n - 1$.

Lemma 11: For each k, $h, 0 \le k, h \le d-1$ and $0 \le i, j \le n$.

$$\sum_{s \in C_{a^h p^j}} \alpha^{a^k p^i s} = \begin{cases} -1 & \text{if } i+j \ge n, \ j=n, \\ -\frac{\phi(p^{n-j})}{d} & \text{if } i+j \ge n, \ j \le n-1, \\ \frac{1}{p^j} A_{i+j}^{(h+k)} & \text{if } i+j \le n-1. \end{cases}$$

Proof: For j = n, $i + j \ge n$ and $C_{a^n p^j} = C_{a^n p^n} = C_{p^n}$, so that the required sum (using Lemma 9) is

$$\sum_{s \in C_{p^n}} \alpha^{a^k p^i s} = \sum_{s=0}^{\phi(q)-1} \alpha^{a^k p^{i+n} \ell^s} = \sum_{s=0}^{q-2} \beta^{\ell^s} = -1,$$

Where $\beta = \alpha^{a^{k+n}p^{i+j}}$ is a primitive qth root of unity, if $i+j \ge n$. Therefore, $\beta^{\ell^s} = \beta^{\ell^r}$ if and only if $\ell^s \equiv \ell^r \pmod{q}$, Only if $s \equiv r \pmod{\varphi(q)}$ is accessible. The sum is then equivalent to Lemma 9.

$$\frac{\phi(p^{n-j}q)}{d\cdot\phi(q)}\left(\sum_{s=0}^{\phi(q)-1}\beta^{\ell^s}\right) = -\frac{\phi(p^{n-j})}{d}.$$

Also,

$$\begin{split} A_{i+j}^{(n+k)} &= \sum_{z \in C_{q^{n+k}}} \alpha^{p^{i+j}z} = \sum_{z \neq 0}^{\frac{q(Q^n)}{d} - 1} \alpha^{p^{i+j}a^{k+k}t^z} = \sum_{z = 0}^{\frac{q(Q^n)}{d} - 1} \beta^{t^z} \\ &= \frac{\phi(p^n q)}{d} \cdot \frac{d}{\phi(p^{n-i-j}q)} \sum_{z = 0}^{\frac{q(Q^n-i-j)}{d} - 1} \beta^{t^z} = p^{i+j} \sum_{z = 0}^{\frac{\phi(p^n-i-j)}{d} - 1} \beta^{t^z}. \end{split}$$

From, The lemma sum is the same $\frac{1}{p^{j}}A_{i+j}^{(b+k)}$. The lemma proves this.

Lemma 12: For $0 \le k \le d-1$, $0 \le j \le n-1, 0 \le i \le n$

$$\sum_{s \in C_{p^{j_q}}} \alpha^{a^k p^i s} = \sum_{s \in C_{p^{j_q}}} \alpha^{p^i qs} = \begin{cases} \phi(p^{n-j}) & \text{if } i+j \ge n, \\ -p^i & \text{if } i+j = n-1, \\ 0 & \text{if } i+j \le n-2. \end{cases}$$

Proof: Let r be either q or a^k for some k, $0 \le k \le d-1$.

The sum expected is the same as

$$p^{i} \sum_{s=0}^{\phi(p^{n-i-j})-1} \beta^{\ell^{s}} = \begin{cases} p^{i} \cdot 0 & \text{if } n - (i+j) \ge 2, \\ p^{i} \cdot (-1) & \text{if } n - (i+j) = 1, \end{cases}$$
$$= \begin{cases} 0 & \text{if } i+j \le n-2, \\ -p^{i} & \text{if } i+j = n-1. \end{cases}$$

This completes the lemma proof.

Lemma 13: For $0 \le i \le n - 1, 0 \le j \le n, 0 \le h \le d - 1$.

$$\sum_{s \in C_{a^h p^j}} \alpha^{p^i qs} = \begin{cases} \phi(q) & \text{if } i+j \ge n, \ j=n, \\ \frac{\phi(p^{n-j}q)}{d} & \text{if } i+j \ge n, \ j \le n-1, \\ \frac{-p^i(q-1)}{d} & \text{if } i+j=n-1, \\ 0 & \text{if } i+j \le n-2. \end{cases}$$

Proof: For j=n, as $C_{a^hp^j} = C_{p^*}$, the required sum is $\sum_{s \in C_{p^*}} \alpha^{p^j q_s} = \sum_{s=0}^{\phi(q)-1} \beta^{t^*} = \phi(q)$, where $\beta = \alpha^{p^{t+n}q} = 1$. For $j \leq n-1$ the sum is

$$\sum_{v \in \mathcal{C}_{q^k p^\ell}} \alpha^{p^\ell q_5} = \sum_{s=0}^{\frac{p(p^{k-1}q)}{d}-1} \beta^{\ell^s} = \frac{\phi(p^{n-j}q)}{d \cdot \phi(p^{n-j})} \sum_{s=0}^{\phi(p^{k-j})-1} \beta^{\ell^s} = \frac{\phi(q)}{d} \sum_{s=0}^{\phi(p^{n-j})-1} \beta^{\ell^s},$$

Where $\beta = \alpha^{p^{i+l_q}}$ is a primitive $p^{n, i-j_{th}}$ root of unity for $i+j \leq n-1$ and if $i+j \geq n$ then $\beta = 1$. Therefore, the sum is the same $\frac{\phi(q)\phi(p^{n-j})}{d}$, if i+j n. If $i+j \leq n-1$, The sum becomes then by Lemma 9

$$\frac{\phi(q)p^i}{d} \sum_{s=0}^{\phi(p^{n-i-j})-1} \beta^{\ell^s} = \begin{cases} 0 & \text{if } i+j \le n-2, \\ -\frac{\phi(q)p^i}{d} & \text{if } i+j=n-1, \end{cases}$$

The lemma proves this

REFERENCES

- S.K. Arora & M. Pruthi (1999). Minimal cyclic codes of length 2pn, Finite Fields Appl. 5, pp. 177–187.
- G.K. Bakshi & Madhu Raka (2003). Minimal cyclic codes of length pnq, Finite Fields Appl. 9, pp. pp. 432–448.
- [3] F.J. MacWilliams & N.J.A. Sloane (1977). Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
- [4] Vera Pless : Introduction to the Theory of Error-Correcting Codes, Wiley–Intersci. Ser. Discrete Math. Optim.
- [5] M. Pruthi & S.K. Arora (1997). Minimal cyclic codes of prime power length, Finite Fields Appl. 3, pp. 99–113.
- [6] M. Pruthi (2001). Cyclic codes of length 2m, Proc. Indian Acad. Sci. Math. Sci. 111, pp. 371–379.
- [7] A. Sharma, G.K. Bakshi, V.C. Dumir, M. Raka (2008). Irreducible cyclic codes of length 2n, Ars Combin. 86, pp. 133–146.
- [8] Ranjeet Singh, Manju Pruthi (2011). Primitive idempotents of irreducible quadratic residue cyclic codes of length pnqm, Int. J. Algebra 5, pp. 285–294.
- [9] S.K. Arora and M. Pruthi (1999). "Minimal Cyclic Codes Length 2pn ," Finite Field and their Applications, 5, pp. 177-187.
- [10] Vera Pless (1988). "Introduction to the Theory of Error-Correcting Codes", WileyIntersci. Ser. Discrete Math. Optim.,

Corresponding Author

Manjeet Singh¹* Dr. Pradeep Goel²

Research Scholar, Department of Mathematics, Sai Nath University, Ranchi, Jharkhand