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Isomorphisms and Automorphisms Groups 
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Department of Mathematics, P.K.S.D. College, Kanina, Mohindergarh, Haryana, India 

Abstract – We shall study the concepts of isomorphism and automorphism of group. We shall also 
discuss inner automorphisms. Before this topic, firstly we discuss about group, subgroup, normal 
subgroups. An isomorphism could also be termed as an “indirect” equality in algebraic systems. An 
isomorphism of a group G to itself is called automorphism. We discuss about the theorem whose state 
that let G be a group and let Aut (G) de not the set of all automorphism of a group G . Then Aut (G) forms 
a group under the composition of mapping as binary operation. After that we solve the problem and 
example related to this topic. 

Keywords:- Groups, Subgroup, Normal Subgroups, Homomorphism, epimorphism, Monomorphism , 
Endomorphism 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTRODUCTION 

Definition :-   A group <G , *> is a non-empty set G , 
together with a binary composition (operation) * on G , 
such that it satisfies the following postulates. 

(i) Closure property for all  a , b Є G = a * b Є G 

(ii) Associativity : a*(b*c) = ( a * b ) * c , for all a , 
b , c Є G 

(iii) Existence of identity : There exist an element  
e Є G such that e * a = a * e = a for all a Є G 

(iv) Existence of inverse : for each a Є G , there 
exists an element a Є G such that a * a' = a' * 
a = e Here a' is called inverse of a and a' = a

-1
  

Since * is a binary operation on G ,  a * b Є G for all  a, 
b Є G  

REMARK : 

1. Generally we denote the binary composition 
for a group by. (dot). 

Note that a group is not just a set G. Infact a group G 
is made up of two entities. The set G and a binary 
operation. on G. 

2. The symbol * and . are just notations 
representing binary operation. 

Defination :- A group G is obtaine if its binary 
operation is commutative i.e. a . b = b . a for all a , b Є 
G. 

Some Results Based on Groups. 

 In a group < G  , . > 

(i) Identity element is unique. 

(ii) Inverse of each a Є G is unique. 

(iii) a
-1

 is called inverse of a and  (a
-1

) 
-1

 = a for all 
a Є G 

(iv) (ab)
-1

 = b
-1

 a
-1

 , for all a , b Є G  

(v) ab = ac => b=c (left cancellation Law) 

ba = ca => b = c (Right cancellation Law) 

(vi) ea = a (left identity) 

ae =a ( Right identity ) 

(vii) a
-1

 a = e (left inverse) 

(viii) aa
-1

 = e (Right inverse) 

(ix) A system < G , . > forms a group iff 

(a) a (bc ) = (ab ) c for all a , b , c Є G 

(b) There exist e Є G such that  ae = a for all a Є 
G 

(c) For all a Є G , there exist a' Є G such that aa' 
= e 
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 Isomorphisms and Automorphisms Groups 

Definition :- A non – empty subset H of a group G is 
called a  subgroup of      < G , . > if H itself is a group 
with respect to the some binary composition defined 
on G. 

If G is a group with identity element e, then < G, . > 
and < {e},. > are called trivial subgroups of < G,. > Any 
subgroup other than these two subgroups is called a 
proper or non- trivial subgroup. 

Definition:- A subgroup H of a group G is said to be a 
normal subgroup of G if Ha = aH for all a Є G  

G and { e } are always normal subgroups of G and 
these group are called trivial normal subgroups . A 
group G = { e } not having any non-trial normal 
subgroups is called a simple group , e.g. H = { 1 , -1 } 
is a normal. 

Definition:- Let < G , 0 > and < G’ * > be two groups . 
Then a mapping f: G → G' is called a homomorphism, 
then f (G) is called homomorphism image of G. 

A one to one homomorphism is called a 
monomorphism. 

A homomorphism of a group G to itself is called an 
endomorphism of G. 

An onto homomorphism is called an epimorphism. 

Some Results Based on Homomorphisms. 

(i) Let f : G→ G'  be a homomorphism. Then 

(a) f ( e ) = e' 

(b) f ( a
-1

 ) = ( f (a) )
-1 

(c) f (a
n
 ) = [ f (a) ]

n
 , n is an integer , where e and 

e' are identity elements of G and G' 
respectively. 

Definition :- A homomorphism of a group G onto a 
group G' is called an isomorphism if f is a one to one 
mapping. 

Definition :- An isomorphism from a group G to itself 
is called an               automorphism of G . Thus a one-
one onto map f : < G , * >→ <G , * > is called an 
automorphism of G if f ( x *y ) = f (x) * f (y) for all x , y 
Є  G . 

Th
m

 :- Let G be a group and let Aut (G) denot the set 
of all automorphism of a group G . Then Aut (G) forms 
a group under the composition of mapping as binary 
operation. 

Proof :- Let Aut (G) = {f : f is an automorphism of G} 

We shall show that Aut (G) forms a group with 
composition of mapping as binary operation. 

Closure :- If f , g Є Aut (G) , then gf : G → G being the 
composition of f and g is also one-one onto mapping. 

If x ,y Є G then (gf ) (xy ) = g [f (xy )] 

= g [ f (x) f (y) ] 

= g [ f(x) ] [g f(y) ]  = (gf ) (x) (gf) (y)  

Thus gf is also an automorphism of G and so gf Є Aut 
(G). This shows that automorpisms holds closure. 

Associativity :- Let f, g,  h Є Aut G 

( f (gh ) (x) = f ( gh (x) ) = f (g (h (x) ) --------1. 

((fg)h ) (x) = (fg ) h (x) 

= f(g(h(x)))---------2. 

From eq.  1 and 2 

  (f(gh)(x) = ((fg)h)(x) , for all x Є G 

f(gh) = (fg) h for all f , g, h Є Aut (G) 

Existence of Identity: Let I: G →G be the identity 
function on G, such that I (x) = x for all x Є G 

So I is one-one onto 

Let x ,y Є G => xy Є G  

= > I (xy ) = xy  

= I (x) I (y) 

=>  I (xy) = I (x) I (y)  

=> I is a homomorphism. 

Thus I : G → G is an isomorphism of G onto itself and 
so I Є Aut (G) 

Existence of Inverse :- Let f Є Aut (G) 

=>  f is one-one onto mapping form G to G 

= > f 
-1

 is also one-one onto mapping form G to G. 

Let x ,y Є G Then there exist x , y Є G , such that  

f 
-1

 (x) = x 1 = f (x1) = x 

f
-1

 (y) = y , = f (y1) = y 

Then f
-1

 (xy) = f
-1

 [f (x1) f (y1) ]  

= f
-1

 (f (x , y ) )                 ( f is homomorphism ) 

= x1 y1 = f
-1

 (x) f
-1

 (y) 
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Also f

-1
 is one-one onto  

= f
-1

 is an automorphism and so f
-1

 Є Aut (G) 

Hence Aut (G) forms a group with respect to 
composite composition . 

Definition:- Let G be a group and  a Є G . Then the 
mapping Ta : G → G defined by Ta (x) : a

-1
 xa is an 

automorphism of G and it is called an inner 
automorphism of additive group of integers Ta (x) = (-a) 
+ x + (a) = x for all x Є G . 

Remarks:- Performing Ta on x Є G is called 
conjugation of x by a . 

2.  We denote the set of all inner automorphisms of G 
by Inn (G) 

Value Addition :- If G is an abelian group then the 
inner automorphism induced by a Є G reduces to the 
identity automorphisms of G , i.e. Inn (G) = { I } . Thus, 
inner automorphisms are of interest mainly in case of 
non-abelian groups. 

Example:- We now study the inner automorphism of G 
= D4 the Dihedral group of symmetries of a square , 
induced by R90  

R90 (R90)  = R90 R90 R90
-1

 = R 90 

R90(R180) = R90R180  R90
-1

 = R180 

R90 (R270) = R90 R270 R90
-1

 = R270 

R90(H) = R90HR90
-1

 H 

R90 (V) = R90 V R90
-1

 = V 

R90 (D) = R90 D R90
-1

=D 

R90 (D') = R90 D' R90
-1

 = D' 

It is good exercise to see the action of inner 
automorphism of D4 induced by all other elements of 
D4 as well. 

Problem: Let g be an element of a group G. show that 
the inner automorphism induced by g is same as the 
inner automorphism induced by Zg, Where z is in Z (G) 
, the centre of G 

Solution:-  ɸzg (x) = (zg) x (zg)
-1

  as x Є  G 

= g(z) x (g
-1

 z
-1

 ) , as z Є Z  (G) 

= gz (x) z
-1

g
-1

 , as z Є Z ( G) = z
-1

 Є Z (G) 

= gxzz
-1

g
-1 

=  gxg
-1 

= ɸg (x) 

Hence ɸzg = ɸg 

Note :- It is evident from the above problem that two 
distinct elements of a group G need not induce two 
distinct inner automorphisms , i.e. if a ≠ b in G even 
then a and b may be same. 

Thus if G = {e, a, b, c------- } then Inn (G ) = {ɸe , ɸb , 
ɸc………….} may have duplications. 

Ilustration :- Aut (Z6) 

Solutions : Aut (Z6 )≈  U(6) = { 1,5 } mod 6 

Thus Aut (Z6) being a group of order Z (Prime ) is 
cyclic and hence isomorphic to Z2. 
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