

Journal of Advances and Scholarly Researches in Allied Education

Vol. X, Issue No. XX, October-2015, ISSN 2230-7540

A STUDY ON DIGITAL IMAGES AND THEIR RELATED METHODS

AN
INTERNATIONALLY
INDEXED PEER
REVIEWED &
REFEREED JOURNAL

A Study on Digital Images and Their Related **Methods**

Baljeet Kaur¹* Dr. Kalpna Midha²

¹ Research Scholar, OPJS University, Churu, Rajasthan

Abstract - Image Processing is a technique to improve raw images received from cameras placed on satellites, space probes and aircrafts or pictures taken in normal life for various applications. Basically, all image processing operations can be grouped into some techniques: Image representation, Image preprocessing, Image enhancement, Image restoration, Image analysis, Image reconstruction, Image data compression. The past deals with initial processing of raw image data to correct for geometric distortion, to standardize the data radiometrically and eliminate noise present in the data. The aim of the information extraction operations is to replace visual analysis of the image data with quantitative techniques for automating the identification of tone in a scene. This involves the analysis of multispectral image data and the application of statistically based decision rules for determining the earth cover identity of each pixel in an image. The objective of categorization process is to classify all pixels in a digital image into one of several earth cover classes or themes. This paper entails the analysis of various image processing techniques and algorithms. In this paper we analyze different types of existing method of image processing techniques.

Keywords: Image Processing, JPEG, Satellite Image, Image Enhancement, Digital Image

INTRODUCTION

Image Processing is a technique to improve raw images received from cameras or sensors placed on satellites, space probes and aircrafts or pictures taken in normal life for various applications. Various techniques have been developed in Image Processing during the last five decades. Most of the techniques are developed for enhancing images obtained from unmanned spacecrafts, space probes and military inspection flights. Image Processing systems are becoming popular due to easy availability of powerful personnel computers, large size memory devices, graphics software. Image Processing is used in various applications such as Remote Sensing, Medical Imaging, Textiles, Material Science, Military, Film industry, Document processing, Graphic arts The common steps in image processing are image scanning, storing, enhancing and interpretation.

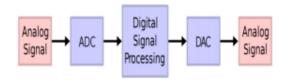


Figure 1.Digital signal processing of Image

Image Processing are given two methods as follow:

Analog Image

Processing Analog Image Processing is refer to the alteration of image through electrical means such example is the television image. The television signal is a voltage level which varies in amplitude to represent brightness through the image. electrically varying the signal, the displayed image appearance is altered. The brightness and contrast controls on a TV set serve to adjust the amplitude and reference of the video signal, resulting in the brightening, darkening and alteration of the brightness range of the displayed image.

Digital Image Processing

In this case, digital computers are used to process the image. The image will be converted to digital form using digital conversion method and then process it. defined as the subjecting representations of objects to a series of operations in order to obtain a desired result. It starts with one image and produces a modified version of the same. It is therefore a process that takes an image into another.

² Assistant Professor, OPJS University, Churu, Rajasthan

Digital image processing is refer to processing of a two dimensional picture by a digital computer. In a broader context, it implies digital processing of any twodimensional data. A digital image is an array of actual numbers represented by a finite number of bits. The principle advantage of Digital Image Processing methods is its versatility, repeatability and the preservation of original data precision.

DIFFERENT **METHODS** FOR THE PROCESSING OF DIGITAL IMAGES

Image Representation

An image defined as in the "real world" is considered to be a function of two real variables, such example, f(x,y) with f as the amplitude of the image at the real coordinate position (x,y). An image processing operation typically defines a new image g in terms of an existing image f. The effect of digitization is given figure.

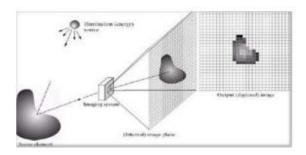


Figure 2: A digital Image Representation

Image Preprocessing

Preprocessing indicates that the same tissue type may have a different scale of signal intensities for different images. Preprocessing functions involve those operations that are normally required prior to the main data analysis and extraction of information and are generally grouped as radiometric or geometric corrections. Radiometric corrections include correcting the data for sensor irregularities and unwanted sensor or atmospheric noise, removal of non-brain vowels and converting the data so they accurately represent the reflected or emitted radiation to find out a transformation between two images precisely. The preprocessed images will have some noise which should be removed for the further processing of the image. Image noise is most apparent in image regions with low signal level such as shadow regions or under exposed images. There are so many types of noise like salt and pepper noise, film grains, All these noise are removed by using algorithms. Among the several filters, median filter is used.

Image enhancement

Image enhancement techniques can be divided into two wide categories:

- 1. Spatial domain methods, which function directly on pixels
- 2. Frequency domain methods, which function on the Fourier transform of an image.

Spatial domain methods

The value of a pixel with coordinates (x,y) in the enhanced image is the result of performing some operation on the pixels in the neighborhood of (x,y) in the input image, F. Neighborhoods can be any shape, but usually they are rectangular.

Histogram Equalization

Histogram equalization is a common technique for enhancing the appearance of images. Suppose we have an image which is predominantly dark. Then its histogram would be skewed towards the lower end of the grey scale and all the image detail is compressed into the dark end of the histogram. If we could `stretch out' the grey levels at the dark end to produce a more uniformly distributed histogram then the image would become much clearer.

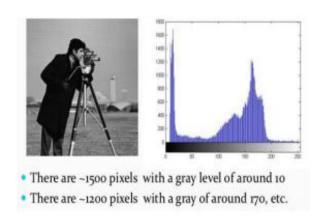


Figure 3: The original image of camera man and its histogram, and the equalized versions. Both images are quantized to 64 grey levels.

Frequency domain methods

Image enhancement in the frequency domain is straightforward. We simply compute the Fourier transform of the image to be enhanced, multiply the result by a filter and take the inverse transform to produce the enhanced image. The idea of blurring an image by reducing its high frequency components or sharpening an image by increasing the magnitude of its high frequency components is intuitively easy to understand. However, computationally, it is often more efficient to implement these operations as convolutions by small spatial filters in the spatial domain. Understanding frequency domain concepts important, and leads to enhancement techniques that might not have been thought of by restricting attention to the spatial domain.

Filtering

Low pass filtering involves the elimination of the high frequency components in the image. It results in blurring of the image .An ideal low pass filter would retain all the low frequency components, and eliminate all the high frequency components. However, ideal filters suffer from two problems: blurring and ringing. These problems are caused by the shape of the associated spatial domain filter, which has a large number of undulation. Smoother transitions in the frequency domain filter, such as the Butterworth filter, achieve much better results.

Figure 4: Transfer function from original image to blurring image

Image Analysis

Image analysis methods extract information from an by using automatic or semiautomatic techniques termed as scene analysis, description, image understanding, pattern recognition, computer/machine vision . Image analysis differs from other types of image processing methods, such as enhancement or restoration in that the final result of image analysis procedures is a numerical output rather than a picture.

Image Compression

The objective of image compression is to reduce the size of digital images to save storage space and transmission time. Lossless compression is preferred for artificial images like technical drawings, icons and also be preferred for high value content, such as medical imagery or image scans made for archival purposes. Lossy methods are especially suitable for natural images such as photos in applications where minor loss of fidelity is acceptable to achieve a reduction in bit rate. substantial The compression that produces unnoticeable differences can be called visually lossless. Run-length encoding, Huffman encoding and Lempel Ziv encoding are the methods for lossless image compression. Transform coding such as DCT, Wavelet transform are applied followed by quantization and symbol coding can be cited as a method for lossy image compression.

CONCLUSION

Digital image processing of satellite data can be primarily grouped into some categories such as Image Rectification, Enhancement and Information withdrawal. Image rectification is the pre-processing of geometric satellite data for and radiometric connections. Enhancement is applied to image data in order to effectively display data for subsequent visual interpretation. Information withdrawal is based on digital classification and is used for generating digital thematic map. This paper presents various techniques of image processing. These are still a challenging task for the researchers and academicians. Comparing the performance of image processing technique is difficult unless identical data sets and performance measures are used. Studied in different papers related to some image processing techniques are used for better technique for different types of data inputs. There are different types of symbol coding techniques that can be used for image processing. After study of all techniques it is found that lossless image compression techniques are most effective over the lossy compression techniques.

REFERENCES

- [1]. Digital Image Processing - A Remote Sensing Perspective, Jhon R. Jenson, 3 rd Edition, Prentice - Hall, 2013.
- Digital Image Processing Kenneth R. [2]. Castleman, Prentice-Hall, 2015.
- [3]. KMM Rao, Medical Image Processing, Proc. of workshop on Medical Image Processing and Applications, 8th October 2014 @ NRSA, Hyderabad-37.
- [4]. KMM Rao, Image Processing for Medical Applications, Proc. of 14th world conference on NDT, 8th – 13th Dec 2014.
- Ramanjaneyulu M, KMM Rao , A Novel technique to Resample High Resolution [5]. Remote Sensing Satellite Images, Proc. of IGRASS-02, Colorado.
- [6]. KMM et al., Design and Fabrication of Color Scanner, Indian Journal of Technology, Vol. 15, Apr 2014.
- [7]. Fundamentals of Digital Image Processing -Anil K. Jain, Prentice-Hall, 2013.
- Computer Image Processing and Recognition [8]. - Ernest L. Hal, Academic Press, 2012.
- Digital Image Processing Chellappa, 2nd [9]. Edition, IEEE Computer Society Press, 2014.

Corresponding Author

Baljeet Kaur*

Research Scholar, OPJS University, Churu, Rajasthan