

Neeta Tewari1* Dr. Alok Kumar Verma2

w
w

w
.i
g

n
it

e
d

.i
n

248

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XI, Issue No. 22, July-2016, ISSN 2230-7540

A Study on Software Fault Detection Methods

Neeta Tewari1* Dr. Alok Kumar Verma2

1
 Research Scholar, Mewar University, Chittorgarh, Rajasthan

2
 Associate Professor, Mewar University, Chittorgarh, Rajasthan

Abstract – Quality assurance activities such as testing, verification, and validation, defect tolerance, and
fault prediction is some of the software engineering interests. When every organization doesn't have
enough resources and money to check the whole program, a project manager may use other fault
detection algorithms to classify systems components that are more vulnerable to faults. Throughout the
field of information engineering, there are so many prediction methods including monitoring, health, and
cost prediction. In this paper, the prediction of soft-faulting has been studied using several machines, for
example, decision-making bodies, decision tables, random forest, neural networks, Naïve Bayes, and
distinctive classifications of artificial immune systems, as most of them do not have a stable model.

Key Words: Decision Trees, Decision Tables, Random Forest, Neural Network

- X -

INTRODUCTION

Static and dynamic detection are the two forms of
detection techniques. Statistical analysis requires tools
to recognize faults and anomalies that are operating
through code and data. Typically they are based on
configurable laws and predefined values. Dynamic
detection involves approaches like the analysis of
runtime and sequence matching of trace and log data.
Although static analysis may not involve the executing
systems being checked, dynamic approaches require
certain programmers.

The identification activities take place during different
life cycle periods of the project, and a schematic
illustrates how they translate into project behavior. The
set of approaches utilizes either one or another
depending on need and criticality.[1]

For standardization problems, automated tools are
primarily used but Automated Static Analysis is still
repeatedly used for a manual walkthrough of code. It
helps in detecting flaws correlated with requirements
non-compliance, potential memory leakage, variable
utilization, etc. During the improvement phase, they
are precariously positioned as they help to avoid
extreme stress and imperfection correlated with
leakage in research testing cycles. Some of Java
technology's most widely employed tools are
programming mistake detector, Check-Style & Find
Bugs, and similarly, other technologies also have
similar tools. Although this plays an important role in
the growth process, it is not so commonly done in
maintenance. Nonetheless, the castoff as an effective
identification mechanism and hygiene consideration
for methods which have an Adaptive Security

Appliance tools foundation, are extremely costly like
any error common in the field.[2]

Adaptive Security Appliance software cannot detect
multiple faults that result in faults on the repair
process. Adaptive Security Appliance Open Source
Software resources reveal that it includes fewer than
3% of the defects. For these situations, the greater
amount of errors becomes highly useful despite the
marginal commitment. Graph mining is a lively control
flow that relies on the system used to recognize faults
that cannot crash in the countryside. It uses call
diagrams that are quickly interpreted. The graph node
implies roles that are performed by boundaries and
calls for certain purposes. Based on call rates,
boundary weights are added. Call frequency
differences and contact configuration changes are
possible deficiencies. Odd events from routine events
can be identified by a clustering algorithm or by a
neural network. [3]

Classifications are often based on the faulty runs and
are recognized when a fault is detected. Naïve Bayes
and Bagging are among the most popular
classificatory. A guided learning methodology and an
integer approach are proposed in the Bayesian
system. This adopts a primary probabilistic paradigm
which helps one to catch moral vagueness by defining
the probability of outcomes. A bagging classifier is a
meta-estimator collaborative that suits base classifiers
for each arbitrary paragraph of the particular data set
and then combined predictions (by voting or by
averaging) to determine the outcome.[4] The
secondary unmonitored model which assimilates the
likelihood of propagation of the regular behavior, in-
code area, to detect the events in the abnormal

Neeta Tewari1* Dr. Alok Kumar Verma2

w
w

w
.i
g

n
it

e
d

.i
n

249

 A Study on Software Fault Detection Methods

behavior. The knowledge on abnormalities is used to
refine the marking for the classification method, which
concentrates mainly on irregular findings. The mining
of patterns is often categorized but requires special
iterative methods for the classification of computer
evidence in the identification of loss. A variety of
biased mechanisms are initially introduced that extract
recurring occurrences from the traces of system
success. The collection of the functionalities is then
made to choose the right grouping features.[5]

For detecting errors, the classifier model is used which
is qualified to use such functions. The rule-based
logging method recommends the automated log entry
by unique laws in an ordered way. Any anomalies in
this flow can be detected and warned automatically.
For problem fields with moving values and regularities,
machine learning procedures are relatively effective.
The output of machine learning algorithms is metric
knowledge for software modules or applications with
faulty details. Such methods allow the distribution
likelihood and the study of errors.

Decision trees, Bayesian belief networks, and Neural
Network are the popular tools or techniques for
software defect prediction. Data classification is done
in a two-step process. Based on their characteristics
attributes are classified then each record will refer to a
class. Many documents are used for testing studies as
datasets. During unregulated testing the items have
unidentified names, so the amount of groups is
typically unclear until testing. Clustering is sometimes
called non-supervised learning.[6]

A. Naive Bayes Classifier

It is a simple method that uses Naïve Bayes models
for classification. It helps in supervised learning. It
uses maximum likelihood.

B. Decision Tree Induction

They form a tree-like structure following the basics of
flowcharting, where internal nodes demonstrate the
testing of the attribute; the class distribution is
represented by leaf nodes. The classification of
unknown samples is done by testing the sample
against the decision tree, using the values of the
attributes. The decision tree is used for deducing
classification rules.[7]

C. Tree Pruning

It is a method of finding the wrong data. Defects in the
training data result in multiple branches in the tree.
Over-fitted data is identified. Statistical methods are
used to do away with unstable branches.

D. Random Tree

A type of decision tree that cogitates ―K‖ randomly
chosen attributes at each node and allows class

possibilities based on back fitting with no pruning is a
random tree. The belongings of several variables are
generally not found. [8]

 By the bootstrapping technique, typically more
than half of the dataset used for training does
not exist in the bag which is called the out-of-
bag data.

 Every tree is formed by random attributes. The
features make nodes and leaves with standard
tree-building algorithms.

 The tree is grown up to the maximum extent
possible until Pruning is not done.

Failure Data

During the execution of software, the failure datasets
are obtained manually. They are collected over a
series of the time interval. Collecting fault data is the
basic and necessary condition for model analysis,
hence it is necessary to ensure the group of failure
data accuracy, completeness, and timeliness. [9]
Software failure data collection steps are as below:

► Take steps to determine what is the type of
software failure;

► Also, determine the amount of failure data
and no of people involved;

► Use automation tools for collecting failure
data;

► Design the plan to implement, collect and
calculate failure data, analyzing data;

► Collection and monitoring of the failure data.
[10]

Failure Classification

Failures of software reliability are classified mainly
into transient failure, recoverable failure,
unrecoverable failure, permanent failure, and
cosmetic failure.

 Random hardware failures are considered by
failure rate that is either: constant, means
where the constituent is in its useful life that
is the effect of getting old is insignificant.
Non-constant, meaning that the component is
subjected to a burn-in phase or the wear-out
phase.

 Systematic failure: Failure linked in a
deterministic way to a specific cause, which
can only be eradicated by an amendment of
the design or of the manufacturing process,
operational procedures, documentation, or
other relevant factors. Systematic failures

Neeta Tewari1* Dr. Alok Kumar Verma2

w
w

w
.i
g

n
it

e
d

.i
n

250

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XI, Issue No. 22, July-2016, ISSN 2230-7540

(non-physical causes): Systematic fault will
always be repeated when triggering condition
is available. Systematic faults may be
introduced in any lifecycle phase and when
adequately corrected, the failure, in theory, will
never re-appear.

 Safe failure: Failure of an element and/or
subsystem and/or system that plays a vital
part in employing the safety function that:

► Results in the spurious operation of the safety
function to put end-user computing (or portion
thereof) into a secured state or maintain a
secured state, or

► Increases the probability of the spurious
operation of the safety function to put end-user
computing into a secured state or keep a
secured state.

 Detected - revealed by online diagnostics.

 Undetected - revealed by functional tests or
upon a real demand for activation.

 Random hardware failure: Failure, taking place
randomly in a period, which results from two or
more possible degradation mechanisms in the
hardware.

 Dangerous failure: Failure of a subsystem or
system or element that plays a vital role in
executing the safety function that:

► Averts a safety function from working when it
is required (demand mode) or origins a safety
function to fail (continuous mode) such that
end-user inclines to be potentially hazardous
state or

► Reduces the probability of the safety function
operation [11].

Fault Classification

Design faults outcome mostly from human error in the
growth process or maintenance. The possibility of the
initiation of a fault in design is typically usage
dependent and time-independent. By the increasing
intricacy of hardware systems, design faults become
an important issue for hardware reliability
measurement.

Defects in the hardware or software component of a
system, in the hardware technology and bug fault in
the software, are quite inevitable and are due to many
reasons - Software systems with a significant number
of states and activities, algorithms, complex formulas,
and patron are often unclear in the needs and size of
software and the number of people involved. Timing
coordination, performance factor, recovery, hardware,

and software-related standards are the factors of faults
[12].

Application of Software Reliability Growth Models
(SRGM)

Software Reliability Growth Models are based upon
the assumption that the reliability of a program is a
function of the number of faults that it contains. Such
models apply statistical techniques to the determined
failures during software testing and operation to
predict a product's reliability. To be effective, the data
utilized in the growth model is taken from where the
software will be deployed. It is essential to apply the
outcomes of software reliability assessment to
management problems on software projects for
achieving higher productivity and quality. Applying the
software reliability growth models to the pragmatic
software error data, the critical software reliability
measures such as the number of errors lasting in the
system and the software reliability function could be
estimated. Software reliability analysis based on the
software reliability growth model was described by
non-homogeneous Poisson processes and considered
an implemented software system. Software failure is
an untimely departure of program operation caused by
a software error remaining in order. The following
usual conventions in the area of software reliability
growth modeling are introduced.

► A software system is related to software
failures at random times caused by software
errors.

► Every time a software failure happens, the
software error produced is proximately
removed, and no new errors are introduced.

Mobile software applications are generally a web-
based system, and several web software reliability
models are employed to check the time reliability and
software reliability. Furthermore, there existed various
techniques to characterize the workload in software
[13]. However, the workload measures cannot directly
apply to web software reliability study due to an
environment of the complex web. Techniques utilized
to estimate web software reliability depend on failure
information taken from server records in addition to
workload [14].

A. Optimal Software Release Problem

When the testing of the software‘s duration is
extended, several software faults in a system are
eliminated thereby increasing reliability. Though, it
hints to raise the cost of the testing in addition to
software delivery delay. In contrast, when the software
testing span is short, a software system with low
reliability is delivered, and it includes many software
faults that have not been removed in the testing
phase. Thus, the cost of maintenance at the time of
the operation phase increases. So, it is essential

Neeta Tewari1* Dr. Alok Kumar Verma2

w
w

w
.i
g

n
it

e
d

.i
n

251

 A Study on Software Fault Detection Methods

regarding software management that solves the
duration owing to the optimal length of software
testing, which is otherwise known as optimal release
time. Such a decision problem is mentioned as an
optimal software release problem. These decision
problems have been examined in the preceding
decade by several researchers. Optimal software
release problems study present value besides a
warranty period (in the processing stage) meanwhile
the designer has to pay for fixing the faults perceived.
Formerly it is needed for software growth managing to
explain an optimal software testing time by
incorporating the whole estimated testing cost in
addition to the reliability necessity [15].

B. Maintenance Cost Model with Reliability
Requirement

From the exponential software reliability development
model, the function of software reliability can be
described as the probability that a software failure
doesn‘t consider throughout the time interval [T, T + x]
subsequently the total testing time T, i.e., the release
time. In reliable software development, the manager
requires to spend in addition to controlling the testing
resources by satisfying the reliability requirement
instead of decreasing the cost [15].

CONCLUSION

We can conclude here that different kinds of feature
selection and method-level metrics do not have a
considerable effect on the performance of the
algorithm, and the most important factor here is the
type of algorithm itself; therefore, it is better to improve
the algorithms to get better prediction results

In this paper, we defined algorithms of fault prediction
centered on various classifiers of machines and
specific selection methods for apps. As the precision
values are not accurate measures for success
evaluation, 3 other indicators, Area under Curve,
Probability of Detection, and Probability of Failures,
were used that were historically not utilized together in
other studies. Taking account of the high area under
curve and probability of detection values along with the
low probability of failure values as a successful
benchmark, the random forest is best suited for large
and small datasets.

REFERENCES

1. Menzies, T., Greenwald, J., & Frank, A.
(2007). Data mining static code attributes to
learn defect predictors. IEEE Transactions on
Software Engineering, Vol. 33(1), pp. 2-13.

2. Kumar, A., and Zhang, D. (2007). Hand-
geometry recognition using entropy-based
discretization. IEEE Transactions on
Information Forensics and Security, Vol. 2(2),
pp. 181-187.

3. Singh, P., & Verma, S. (2009, December). An
investigation of the effect of discretization on
defect prediction using static measures.
In IEEE International Conference on Advances
in Computing, Control, & Telecommunication
Technologies, 2009. ACT'09. (pp. 837-839).

4. Singh, P., & Verma, S. (2014). An efficient
software fault prediction model using cluster-
based classification. International Journal of
Information Systems, Vol. 7(3), pp. 35-41.

5. A. Antony, G. Singh, AE Fernando,
and EJLeavline, (2016). Software Fault
Detection using Honey Bee Optimization.
International Journal of Applied Information
Systems, Vol. 11(1), pp. 1–9.

6. Akbar, M. S., & Rochimah, S. (2016).
Prediksi Cacat Perangkat Lunak Dengan
Optimasi Naive Bayes Menggunakan
Pemilihan Fitur Gain Ratio. Jurnal Sistem
dan Informatika (JSI), Vol. 11(1), pp. 147-
155.

7. Novakovic, J. (2010). The impact of feature
selection on the accuracy of naïve Bayes
classifier. In 18th Telecommunications forum
TELFOR (Vol. 2, pp. 1113-1116).

8. Rakesh Rana, Miroslaw Staron, Christian
Berger, Jorgen Hansson, Martin Nilsson &
Wilhelm Meding. (2016). Analyzing Defect
Inflow Distribution and Applying Bayesian
Inference Method for Software Defect
Prediction in Large Software Projects.
Journal of Systems & Software, Vol. 117, pp.
229-244.

9. Erturk, E., & Sezer, E. A. (2015). A
comparison of some soft computing methods
for software fault prediction. Expert systems
with applications, Vol. 42(4), pp. 1872-1879.

10. M.H. Yaacob & W.A. Adnan. (1994). An
integrated neural-fuzzy system of software
reliability prediction. In Proceeding of the
First International Conference on Software
Testing, Reliability and Quality Assurance,
New Delhi, India.

11. J. H. Park, J. Y. Park and S. U. Lee. (1999).
Neural network modeling for software
reliability prediction from failure time data.
Journal of Electrical Engineering and
Information Science, Vol. 4(4), pp. 533-538.

12. Kaveh Sheibani. (2006) Fuzzy Greedy
Search and Job-Shop Problem.

Neeta Tewari1* Dr. Alok Kumar Verma2

w
w

w
.i
g

n
it

e
d

.i
n

252

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XI, Issue No. 22, July-2016, ISSN 2230-7540

13. Michal Horný. (April 18, 2014) Bayesian
Networks. Technical Report No. 5.

14. Sona Taheri, Musa Mammadov. (2013).
Learning the naive Bayes classifier with
optimization models. International Journal of
Applied Mathematics and Computer Science,
Vol. 23(4), pp. 787–795.

15. Zachary C. Lipton, John Berkowitz, Charles
Elkan. (2015) A Critical Review of Recurrent
Neural Networks for Sequence Learning. arXiv
preprint arXiv:1506.00019.

Corresponding Author

Neeta Tewari*

Research Scholar, Mewar University, Chittorgarh,
Rajasthan

