

Fauja Singh*

w
w

w
.i

g
n

it
e
d

.i
n

282

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XI, Issue No. 22, July-2016, ISSN 2230-7540

XSS – A Kid‟s Play to Exploit Web Applications

Fauja Singh*

Ravi Chowk, Purani Abadi, Sri Ganganagar, Rajasthan, India

Abstract – With the evolution of Web 2.0, hiked information sharing through social media, and increasing
use of the web in business, websites have become an attractive property to attack. Web application
attacks are of greater impact than the other quiet applications and software. Since it's hospitable all and
has a wider attack surface. Even Attackers only need an internet browser to access them and perform
attacks on them. The most reason is that the attack is often reproduced easily and even is often performed
employing a browser. If the attack is performed many users are going to be suffering from it. Cross-site
scripting (XSS) is that the category of website vulnerabilities during which an attack is caused by a user’s
browser to run the malicious script from the attacker.

Keywords – Cross-site Scripting, Website Vulnerabilities, Input Validation, Session Management, SQL
Injection, Website Security

- X -

I. INTRODUCTION

Today everything is on the internet and everybody
likes to use it. It has become part of every individual‘s
daily activities. It may be related to information
collecting or any other work. The web application is
considered the backbone of every activity on the
internet [1]. Almost all information is available on the
internet through web applications. Business
applications like e-commerce, banking, transportation,
study, email, blogs, etc are now available as web-
based applications. The demand for web applications
also attracts individuals that want to exploit the
vulnerabilities. The attacker is an individual whose
main concern or intent is to access private data by
performing malicious actions. He finds the
vulnerabilities within the system and exploits them to
realize the information of the victim.

Many of us pay our bills, book hotels, or pass exams
by dynamic websites rather than spending time
communicating. Non-public information of individuals
must be kept secret and confidentiality of them must
be handled by the developer of the web application but
unfortunately, there's no assurance for protecting the
databases from current attacks. As a result, the
system could take the excessive loss in giving proper
assistance to its users or it's going to face destruction.
Sometimes such a sort of collapse of a system can
threaten the existence of a corporation or a bank or an
industry.

II. WEB APPLICATIONS

Ever since its conception, the WWW has evolved
towards an increasingly feature-rich, interactive, and
heterogeneous medium [2]. Unlike early internet sites,

which were simply developed to deliver text practically,
nowadays‘ Web 2.0 sites don't only host content, like
text, images, videos, animations, and audio material,
but also provide a floor for users to devote such data
and share it with the remainder of the planet. As long
because the input provided by users is friendly and
therefore the Web applications are used as expected,
the threats are easily faced by developers. Some
people with simple curiosity, destructive intentions, or
hope for financial profit aim to take advantage of
internet sites and their users to their advantage.
Therefore, even though users hope present-day Web
services accommodate their content logically and
smoothly into the given applications, the safety of their
native computer systems is required, when viewing
web pages created and submitted by potentially
malicious entities.

The web application may be a client-server application
that's executed over the online platform. An internet
application consists of code on both the server-side
and therefore the client-side. On the server-side, an
internet application receives user inputs via HTTP
requests from the client through a browser and
interacts with server file systems, databases, or other
resources for data access and information retrieval. Its
outputs that are in the form of HTML pages are sent to
the client through HTTP responses [3]. On the client-
side, pages with HTML code are rendered and
therefore the client-side code that is in JavaScript is
embedded within the HTTP responses is executed by
the online browser.

Web applications generally interact with a database to
fetch constant data then present the info to the user as
dynamically created output, like HTML sites [4]. This
low-level interaction is unplanned because it doesn't

Fauja Singh*

w
w

w
.i
g

n
it

e
d

.i
n

283

 XSS – A Kid‟s Play to Exploit Web Applications

take into attention the structure of the output language.
Inputs given by a user are normally treated not
properly sanitized, which can cause the online
application to get accidental or unplanned output. This
often poses a powerful threat to website security.

This is often due to the very fact that the users are
permitted to enter tags within the input forms. This
hikes the risk to the online application by granting the
hackers to inject malicious codes like worms within the
web applications with the help of these permitted tags.
In XSS, the attacker executes mischievous code on
the victim‘s machine by manipulating poor validation of
data flowing and code that output HTML [5].

III. VULNERABILITIES

The last years have shown a big increase in the
number of web-based attacks. Many web application
security vulnerabilities come from universal input
validation problems [6]. Websites are the leading way
to provide access to on-line services. Website
vulnerabilities are being exposed at a quick pace. Web
applications usually use JavaScript coding that gets
encapsulated into web pages to get dynamic client-
side content. This client-side script code is executed
within the client's browser [7]. These pages often
contain script code to be executed dynamically within
the client Web browser. Most Web applications aim to
implement simple, spontaneous security approaches.
Even so, Web applications are presently prone to a lot
of successful attacks, like cross-site scripting, SQL
injection, cookie theft, session handling, browser
control, and therefore the virus in Web-based email
and social networking sites.

The main vulnerabilities in a basic website are-

1. Validating Input

User inputs can never be trusted and wish to be
validated or sanitized before they will be utilized by
web applications.

2. Handling Session

Web applications adopt an abstraction of an internet
session to spot and correlate a series of web requests
from an equivalent user during a particular period of
your time A set of session variables is related to an
internet session and may be employed by the
appliance to record the conditions from the historical
web requests that affect the longer-term execution of
the online application like session state.

3. Correct Logic Implementation

Authentication and authorization are the foremost
common part of the control flow in many web
applications through which an internet application
restricts its sensitive information and privileged
operations from unauthorized users.

4. SQL Injection

A web application is susceptible to SQL injection
invasions when malicious content can flow into SQL
queries without being fully sanitized, which allows the
attacker to trigger malicious SQL operations by
injecting SQL keywords or operators. For instance, the
attacker can append a different SQL query to the
prevailing query, causing the appliance to drop the
entire table or manipulate the return result.

5. Cross-Site Scripting (XSS)

A web application is vulnerable to XSS attacks when
malicious content can flow into web responses without
being fully sanitized, which allows the attacker to
execute malicious scripts in victims‘ browsers. An
attacker can outline some invalid input as parts of
precise script text which is to be handled by
databases [1].

IV. XSS

In the past years, we found everything is on the
internet. It‘s going to be Corporate Management
software, ERP software, HR portals, or real estate
industry portals. Social networking sites like
Facebook, Twitter, MySpace which may be web
applications is been employed by many users
everywhere in the world. So web applications
became very fashionable among users. Hence
they're observed and should be used by hackers.
Cross-site scripting has become a standard
vulnerability of many internet websites. XSS abides
by using the input validation flaws, to inject arbitrary
script code which is later executed at the online
browser of the victim.

This demands an efficient approach on the server-
side to guard the users of the appliance because the
cause for the vulnerability generally finds on the
server-side. We have many solutions for XSS, but
such solutions may reduce the efficiency of the
system [1]. In the cases like these tests are to make a
decision which approach, technique, and browser are
often wont to take down the vulnerabilities, with
acceptable outcome overhead to the system.

The main web application attacks come through
cross-site scripting (XSS) attacks which usually result
from unreliable coding, and failing to disinfect input to
and output from the online application. These are
ranked within the 2009 CWE/SANS Top 25 Most
High-risk Programming Errors. According to the
safety vendor Cenzic, the highest vulnerabilities in
March 2012 include Cross-Site Scripting, 37%.

XSS is employed by a phisher to inject credential-
stealing code into official sites without having to truly
mimic the location he hopes to penetrate [8]. Cross-
site scripting (XSS) attacks are the number-one
security threat on the web today. XSS attacks are

Fauja Singh*

w
w

w
.i

g
n

it
e
d

.i
n

284

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XI, Issue No. 22, July-2016, ISSN 2230-7540

often self-propagating, and have the promise to rapidly
exploit many people. Broadly, XSS is the injection of
unauthorized script code into an internet page. As an
internet application processes input from doubted
users, it generates some low-integrity output web page
which we term doubted HTML. An XSS attack aims to
plant malicious script code in doubted HTML, provoke
the script to be running on a dupe‘s browser within the
context of the duct web application. We are saying the
attack script is unauthorized because the appliance
doesn't shall allow scripts in doubted HTML. Most
often, untrusted content like user input is included
dynamically during a web application‘s output;
therefore the application‘s developer doesn't have the
posh of arriving at this common understanding
beforehand through testing [9]. Defenses for XSS goal
to stop unauthorized script running by enforcing a no-
script policy on doubted HTML.

Cross-site scripting (XSS) may be a vulnerability of an
internet application that's essentially caused by the
failure of the appliance to see abreast of user input
before returning it to the client's browser. Without
sufficient validation, user input can contain spiteful
code which will be sent to other clients and abnormally
executed by their browsers, thus produce a security
attack. Methods to stop this sort of attack require that
each one application input must be inspected up and
refined, encoded, or validated before sending to any
user. To get the XSS vulnerabilities during a Web
application, conventional ASCII text file analysis
techniques are often exploited. The success of this
attack requires the victim to execute a malicious URL
that can be crafted in such a fashion to seem to be
legitimate initially look[10].

V. XSS SOLUTION

The first line of defense against XSS is input/output
sanitization. Malicious content is often filtered by
checking for, then escaping or disallowing, JavaScript-
specific sub-strings within the user-provided
content[2]. Web applications reach bent a bigger, less-
trusted user base than legacy client-server
applications, and yet they're more susceptible to
attacks. Many companies are beginning to take
initiatives to stop these sorts of break-ins. Code
reviews, extensive penetration testing, and intrusion
detection systems are just a couple of ways in which
companies are battling a growing problem.

Trustful results of web vulnerability scanning tools are
of the hardest importance [11]. Without a transparent
idea of the coverage and stress rate of those tools, it's
difficult to gauge the relevance of the outcome they
supply. Furthermore, it's difficult, if possible, to match
key figures of merit of web vulnerability scanners. Here
we propose a way to gauge and standard automatic
web vulnerability scanners using software error
injection techniques.

Several approaches are proposed to mitigate XSS
attacks. XSS attacks are a combination of one of the
oldest security problems which is a virus with new-age
vulnerabilities in the web application which is Cross-
site scripting [12]. These results, still, are all server-
side and goal to either discover and fix the XSS
problem during a web application or protect a selected
web application in opposition to XSS attacks by taking
action as an application-level firewall. The most
disadvantages of those solutions are that they believe
service providers remember the XSS problem and
require acceptable actions to reduce the threat.
Unfortunately, there are many samples of cases where
the service source is either slow to act or is not able to
repair XSS vulnerability, discard the users weak
against XSS attacks.

Previous methods to identifying XSS vulnerabilities
and preventing utilization include defensive coding,
static analysis, dynamic observation, and test
generation. Each of those methods has its quality, but
also opportunities for improvement. Static analysis
tools can produce wrong alerts and don't create
concrete samples of inputs that act the vulnerabilities.
Dynamic monitoring tools sustain runtime overhead on
the executing application and don't detect
vulnerabilities up to the code has been located.
Therefore, we believe it's time to rethink the
fundamentals of Web application security. It‘s our
orientation that the client Web browsers must tend a
most important role in impose of application security
policies [13].

XSS also can escape traditional tools like firewalls and
Intrusion Detection Systems (IDS) because they
perform through ports used for normal web traffic
which usually are open in firewalls. On the opposite
hand, most IDS specialize in the network and IP layers
whereas XSS work on the application layer.
Researchers have proposed a variety of techniques
and tools to assist developers to recompense for the
shortcoming of guarding coding. Developers need to
undergo some guarding coding exercises to remove
such vulnerabilities. The matter is that some current
techniques and tools are impractical actually because
they might not address all kinds of attacks or haven't
been implemented yet. These techniques require
modification within the original code or the addition of
some modules into the appliance. However, these
methods won't be full-proof and end in performance
degradation. So, there's a requirement to seek out the
simplest combination of platform, browser, and
mitigation.

Here we present away and an automatic tool for
locating security vulnerabilities in Web applications.
Multi-user Web applications are liable for handling
much of the business on today‘s Internet. Such
applications generally maintain sensitive data for
several users, which makes them inviting targets for
attackers. Therefore, security and privacy are the
utmost priority for Web applications. In cross-site

Fauja Singh*

w
w

w
.i
g

n
it

e
d

.i
n

285

 XSS – A Kid‟s Play to Exploit Web Applications

scripting (XSS), the assailant executes malevolent
code on the victim‘s machine by utilizing insufficient
validation of knowledge unconfined to statements that
output HTML. Web applications are obtaining the
dominant thanks to providing access to online
services, but, at an equivalent time, here‘s an outsized
variance among the technical sophistication and
knowledge of web developers. Therefore, there'll
always be web applications vulnerable to XSS [14].

VI. CONCLUSION

The contributions of this paper are as follows:

1. We present three conditions in web application
development, which stand fundamental
challenges for developing secure web
applications, and spot out three levels of
security mechanisms that a secure web
application must poses: First-input validation,
Second-session management, and Third-logic
implementation. Failure of web applications to
satisfy the above security properties is that the
root explanation for corresponding
vulnerabilities, which permits for successful
exploits.

2. We classify existing research works into three
categories: security by construction, security
by verification, and security by protection,
supported their design principle like designing
vulnerability-free web applications, identifying
and fixing vulnerabilities, or defending
vulnerable web applications against
manipulations at runtime, respectively and the
way security measurements are settled at
different levels within the web application
development. We aren't trying to itemize all
the prevailing works but have coat most of the
illustrated works.

3. We identify several open problems that
insufficiently label within the existing literature.
We also talk through coming time research
occasion within the area of web application
security and therefore the new dare that is
expected onwards.

Security isn't a one-time event. It‘s insufficient to
secure your code on just one occasion. A secure
coding initiative must affect all stages of a program‘s
lifecycle. Secure web applications are only possible
when a secure SDLC is employed. Secure programs
are secure intentionally, during development, and by
default.

REFERENCES

[1] R. K. Kotha, D. Naik, and G. Prasad (2012).
―Performance Comparison of XSS Mitigations
based on Platform and Browsers,‖ vol. 29, pp.
62–67.

[2] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda,
and C. Kruegel (2009). ―SWAP: Mitigating
XSS attacks using a reverse proxy,‖ Proc.
2009 ICSE Work. Softw. Eng. Secur. Syst.
SESS 2009, pp. 33–39, DOI:
10.1109/IWSESS.2009.5068456.

[3] X. Li and Y. Xue (2014). ―A survey on server-
side approaches to securing web
applications,‖ ACM Comput. Surv., vol. 46, no.
4, pp. 1–29, DOI: 10.1145/2541315.

[4] Z. Su and G. Wassermann (2006). ―The
essence of command injection attacks in web
applications,‖ ACM SIGPLAN Not., vol. 41, no.
1, pp. 372–382, DOI:
10.1145/1111320.1111070.

[5] A. Kiezun, P. J. Guo, K. Jayaraman, and M.
D. Ernst (2009). ―Automatic creation of SQL
injection and cross-site scripting attacks,‖
Proc. - Int. Conf. Softw. Eng., pp. 199–209,
DOI: 10.1109/ICSE.2009.5070521.

[6] S. Kals, E. Kirda, C. Kruegel, and N.
Jovanovic (2006). ―SecuBat,‖ p. 247, DOI:
10.1145/1135777.1135817.

[7] S. Mohammadi and F. Koohbor (2010).
―Protecting cookies against cross-site
scripting attacks using cryptography,‖ Adv. E-
Activities, Inf. Secur. Priv. - 9th WSEAS Int.
Conf. E-Activities, E-ACTIVITIES‘10, 9th
WSEAS Int. Conf. Inf. Secur. Privacy, ISP‘10,
pp. 22–31.

[8] M. S. Lam, M. Martin, B. Livshits, and J.
Whaley (2008). ―Securing web applications
with static and dynamic information flow
tracking,‖ Proc. ACM SIGPLAN Symp. Partial
Eval. Semant. Progr. Manip., pp. 3–12, DOI:
10.1145/1328408.1328410.

[9] M. Ter Louw and V. N. Venkatakrishnan
(2009). ―Blueprint: Robust Prevention of
Cross-site Scripting Attacks for Existing
Browsers,‖ pp. 331–346, DOI:
10.1109/sp.2009.33.

[10] A. Garg and S. Singh (2013). ―A Review on
Web Application Security Vulnerabilities,‖ Int.
J., vol. 3, no. 1, pp. 222–226, [Online].
Available:
http://www.ijarcsse.com/docs/papers/Volume
_3/1_January2013/V3I1-0196.pdf.

[11] T. Sato and T. Funaki (2007). ―Power-
performance trade-off of a dependable
multicore processor,‖ Proc. - 13th Pacific Rim
Int. Symp. Dependable Comput. PRDC 2007,

Fauja Singh*

w
w

w
.i

g
n

it
e
d

.i
n

286

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XI, Issue No. 22, July-2016, ISSN 2230-7540

no. January, pp. 268–271, DOI:
10.1109/PRDC.2007.55.

[12] M. R. Faghani and H. Saidi (2009). ―Social
networks‘ XSS worms,‖ Proc. - 12th IEEE Int.
Conf. Comput. Sci. Eng. CSE 2009, vol. 4, pp.
1137–1141, DOI: 10.1109/CSE.2009.424.

[13] Ú. Erlingsson, B. Livshits, and Y. Xie (2007).
―End-to-end web application security,‖ Proc.
HotOS 2007 - 11th Work. Hot Top. Oper.
Syst., pp. 2–7.

[14] E. Kirda, N. Jovanovic, C. Kruegel, and G.
Vigna (2009). ―Client-side cross-site scripting
protection,‖ Comput. Secur., vol. 28, no. 7, pp.
592–604, DOI: 10.1016/j.cose.2009.04.008.

Corresponding Author

Fauja Singh*

Ravi Chowk, Purani Abadi, Sri Ganganagar,
Rajasthan, India

fauja.singh@live.in

