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Abstract – In this paper examples of spectral triples, which represent fractal sets, are examined and new 
insights into their noncommutative geometries are obtained Firstly, starting with Connes' spectral triple 
for a non-empty compact totally disconnected subset E of R with no isolated points, we develop a 
noncommutative coarse multifractal formalism. Speci μ cally, we show how multifractal properties of a 
measure supported on E can be expressed in terms of a spectral triple and the Dixmier trace of certain 
operators. If E satis μ es a given porosity condition, then we prove that the coarse multifractal box-
counting dimension can be recovered. Secondly, motivated by the results of Antonescu-Ivan and 
Christensen, we construct a family of (1; +)-summable spectral triples for a one-sided topologically exact 
subshift ofnite type ( μ NA ;). These spectral triples are constructed using equilibrium measures obtained 
from the Perron Frobenius-Ruelle operator, whose potential function is non-arithemetic and Holder 
continuous. 

Keywords:- Noncommutative geometric, Connes, spectral triple, noncommutative integral. 
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INTRODUCTION 

Summary of Main Results 

The main goal of this thesis is to develop the theory of 
noncommutative fractal geometry, as originally 
proposed by Connes [Con3] and Lapidus [Lap]. A 
summary of our main contributions towards this theory 
is as follows. 

A Noncommutative Coarse Multifractal Formalism. 
We show how multifractal properties of a Borel 
probability measure supported on a non-empty 
compact fractal set E of R satisfying a certain porosity 
condition1 can be expressed in terms of the 
complementary intervals of the support of (by a fractal 
set we mean a non-empty totally disconnected space 
with no isolated points). This allows the development 
of a noncommutative analogue of a coarse multifractal 
formalism for Connes' spectral triple representation of 
the set E.  

The Noncommutative Volume of a Subshift of 
Finite Type. By refining the methods of Antonescu-
Ivan and Christensen given in [AIC1], we derive a (1; 
+)-summable spectral triple for each one-sided 
topologically exact subshift ofnite type ( μ 1A ;) 
equipped with an equilibrium measure μ  (where 2 C( μ 
1A ;C) denotes some Holder continuous non-
arithmetic potential function). 

In the 1980s Connes formalised the notion of 
noncommutative geometry (see for instance [Con3, 
Con1]) and, in doing so, showed that the tools of di μ 
erential geometry can be extended to certain non-
Hausdor μ  spaces known as \bad quotients" and to 
spaces of a \fractal" nature. Such spaces are abundant 
in nature and commonly arise from various dynamical 
systems. 

A main idea of noncommutative geometry is to analyse 
geometric spaces using operator algebras, particularly 
C μ -algebras. This idearst appeared in the work of 
Gelfand and Na μ  μ mark [GN], where it was shown 
that a C μ -algebra can be seen as the 
noncommutative analogue of the space of complex-
valued continuous functions on a locally compact 
metric space. Also, note that for a smooth compact 
spin Riemannian manifold, one can recover its smooth 
structure, its volume and its Riemannian metric directly 
from its standard Dirac operator (see [Jos]). Motivated 
by these observations, Connes proposed the concept 
of a spectral triple. A spectral triple is a triple (A;H;D) 
consisting of a C μ -algebra A, which acts faithfully on 
a separable Hilbert space H, and an essentially self-
adjoint unbounded operator D de μ ned on H with 
compact resolvent such that the set fa 2 A : the 
operator [D;(a)] extends to a bounded operator de μ 
ned on Hg is dense in A. (Here : A ! B(H) denotes the 
faithful action of A on H.) Connes showed that with 
such a structure one can obtain a pseudo-metric on 
the state space S(A) of A, analogous to how the 
Monge-Kantorovitch metric is de μ ned on the space of 
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probability measures on a compact metric space. In 
1998 Rie μ el [Rie2] and Pavlovi μ c [Pav] established 
conditions under which Connes' pseudo-metric is a 
metric and established conditions under which the 
metric topology of Connes' pseudo-metric is equivalent 
to the weak μ -topology de μ ned on S(A). Also, 
Connes [Con3] showed that a notion of dimension 
(called the metric dimension) and that a theory of 
integration can be derived for such structures. He also 
proved that for an arbitrary smooth compact spin 
Riemannian manifold there exists a spectral triple from 
which the metrical information, the measure theoretical 
information and the smooth structure of the manifold 
can be recovered (see [Con3, Ren]). This illustrates 
that a spectral triple allows one to move beyond the 
limits of classical Riemannian geometry. That is to say, 
not only is one able to recover classical aspects of 
Riemannian geometry  but through the notion of a 
spectral triple one is able to extend the tools of 
Riemannian geometry to situations that present 
themselves at the boundary of classically de μ ned 
objects, for instance, objects which \live" on the 
boundary of Teichmuller space (such as the 
noncommutative torus) or those of a \fractal" nature 
(such as the middle third Cantor set). Although one of 
the original motivations for noncommutative geometry 
was to be able to deal with non-Hausdor μ  spaces, 
such as foliated manifolds, which are often best 
represented by a noncommutative C μ -algebra (see 
[Con3, V μ ar, Mar, Rie3]), this new theory has scope, 
even when the C μ -algebra is commutative. In 
Connes' seminal book [Con3], the concept of a 
noncommutative fractal geometry is introduced. 
Consequently, a remarkable amount of interest has 
developed in this subject. The topic of [Con3], Connes 
gives numerous examples to indicate how fractal sets 
can be represented by spectral triples. Connes' 
examples include non-empty compact totally 
disconnected subsets of R with no isolated points and 
limit sets of Fuchsian groups of the second kind. 
Subsequently, in 1997 Lapidus [Lap] proposed several 
ways in which the notions of a noncommutative fractal 
geometry could be extended, after which several 
important articles on the subject appeared. For 
instance, in [GI1] Guido and Isola analysed the 
spectral triple presented by Connes for limit fractals in 
R which satisfy a certain separation condition. (Note 
that such sets are non-empty compact totally 
disconnected and have no isolated points.) There, the 
authors investigated aspects of Connes' pseudo-
metric, the metric dimension and the noncommutative 
integral of Connes' spectral triple. In [GI2] this 
construction and analysis is extended to limit fractals 
in Rn, for all n 2 N. Further, Antonescu-Ivan and 
Christensen [AIC1] have provided a construction of a 
spectral triple for an AF (approximatelynite) C μ -
algebra with particular focus on aspects of Connes' 
pseudo-metric. In [AICL] the authors give several 
examples of spectral triples which represent fractal 
sets such as the von Koch curve and the Sierpi μ nski 
gasket. There, the authors showed that for such sets 
the Hausdor μ  dimension can be recovered and that 

Connes' pseudo-metric induces a metric equivalent to 
the metric induced by the ambient space on the given 
set. More recently, in [BP] the authors adapt Connes' 
spectral triple to represent the code space f0; 1gN 
equipped with an ultra-metric d. we begin by 
discussing some of the basic aspects of fractal 
geometry that will be required in the subsequent 
chapters. Therst section, Section 2.1, is split into three 
main parts. A general and brief introduction to fractal 
measures and dimensions (Subsection 2.1.1), a brief 
review of the Minkowski content of a subset of R 
(Subsection 2.1.2) andnally an introduction to the 
notions of coarse multifractal analysis (Subsection 
2.1.3). The material contained in Subsection 2.1.1 and 
Subsection 2.1.2 is standard in the theory of fractal 
geometry and these subsections are respectively 
based on material contained in [Fal1] and [Fal2]. In 
Subsection 2.1.3, we de μ ne the coarse multifractal 
box-counting dimension b(q) at q 2 R for a given 
Borel probability measure with compact support, 
where we use the extension for negative q introduced 
by Riedi [Rie1]. We then prove that an equivalent de 
μ nition of b exists in terms of the complement of the 
support of , provided that the support of  is strongly 
porous. 

LITERATURE REVIEW 

In the 1980s Connes formalised the notion of 
noncommutative geometry (see for instance [Con3, 
Con1]) and, in doing so, showed that the tools of 
differential geometry can be extended to certain non-
Hausdor spaces known as bad quotients" and to 
spaces of a \fractal" nature. Such spaces are 
abundant in nature and commonly arise from various 
dynamical systems. A main idea of noncommutative 
geometry is to analyse geometric spaces using 
operator algebras, particularly Cfi-algebras. This idea 
first appeared in the work of Gelfand and Nafifimark 
[GN], where it was shown that a Cfi-algebra can be 
seen as the noncommutative analogue of the space 
of complex-valued continuous functions on a locally 
compact metric space Also, note that for a smooth 
compact spin Riemannian manifold, one can recover 
its smooth structure, its volume and its Riemannian 
metric directly from its standard Dirac operator (see 
[Jos]). Motivated by these observations, Connes 
proposed the concept of a spectral triple. A spectral 
triple is a triple (A;H;D) consisting of a Cfi-algebra A, 
which acts faithfully on a separable Hilbert space H, 
and an essentially self-adjoint unbounded operator D 
defined on H with compact resolvent such that the set 

 

is dense in A. (Here fi : A ! B(H) denotes the faithful 
action of A on H.) Connes showed that with such a 
structure one can obtain a pseudo-metric on the state 
space S(A) of A, analogous to how the Monge-
Kantorovitch metric is defined on the space of 
probability measures on a compact metric space. In 
1998 Riefiel [Rie2] and Pavlovific [Pav] established 
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conditions under which Connes' pseudo-metric is a 
metric and established conditions under which the 
metric topology of Connes' pseudo-metric is equivalent 
to the weakfi-topology defined on S(A). Also, Connes 
[Con3] showed that a notion of dimension (called the 
metric dimension) and that a theory of integration can 
be derived for such structures. He also proved that for 
an arbitrary smooth compact spin Riemannian 
manifold there exists a spectral triple from which the 
metrical information, the measure theoretical 
information and the smooth structure of the manifold 
can be recovered (see [Con3, Ren]). This illustrates 
that a spectral triple allows one to move beyond the 
limits of classical Riemannian geometry. That is to say, 
not only is one able to recover classical aspects of 
Riemannian geometry, but through the notion of a 
spectral triple one is able to extend the tools of 
Riemannian geometry to situations that present 
themselves at the boundary of classically defined 
objects, for instance, objects which live" on the 
boundary of Teichmuller space (such as the 
noncommutative torus) or those of a fractal" nature 
(such as the middle third Cantor set). Although one of 
the original motivations for noncommutative geometry 
was to be able to deal with non-Hausdorfi spaces, 
such as foliated manifolds, which are often best 
represented by a noncommutative Cfi-algebra (see 
[Con3, Vfiar, Mar, Rie3]), this new theory has scope, 
even when the Cfi-algebra is commutative. 

Fractals, Dynamics and Renewal Theorems. 

In this, we begin by discussing some of the basic 
aspects of fractal geometry that will be required in the 
subsequent chapters. The  μ rst section, Section 2.1, 
is split into three main parts. A general and brief 
introduction to fractal measures and dimensions 
(Subsection 2.1.1), a brief review of the Minkowski 
content of a subset of R (Subsection 2.1.2) and  μ 
nally an introduction to the notions of coarse 
multifractal analysis (Subsection 2.1.3). The material 
contained in Subsection 2.1.1 and Subsection 2.1.2 is 
standard in the theory of fractal geometry and these 
subsections are respectively based on material 
contained in [Fal1] and [Fal2]. In Subsection 2.1.3, we 
define the coarse multifractal box-counting dimension 
b(q) at q 2 R for a given Borel probability measure  μ  
with compact support, where we use the extension for 
negative q introduced by Riedi [Rie1]. We then prove 
that an equivalent de μ nition of b exists in terms of the 
complement of the support of  μ , provided that the 
support of  μ  is strongly porous. 

Definition. (De μ nition 2.1.10.) A subset E of R is de 
μ ned to be strongly porous with porosity constant  μ  2 
(0; 1), if for each x 2 E and r 2 (0; 1] the ball B(x; r) 
contains a complementary interval of E with diameter 
greater than or equal to  μ r. 

Theorem. (Theorem 2.1.20.) Let  μ  denote a Borel 
probability measure on a non-empty compact subset 
of R. Assume that the support of  μ  is strongly porous 
with porosity constant P > 0, and let (Ik : denote the 
set of complementary intervals of supp  whose 

lengths are  μ nite. If  μ  >  2 μ �1, then for each 
q 2 R, we have that 

 

for each  denote the closed ball centred at 

the midpoint of I with radius  Although the 
result of the above theorem seems unusual at  μ rst 
within the context of standard multifractal analysis, it is 
useful in the formulation of a noncommutative coarse 
multifractal formalism. In the next section, we introduce 
the concept of a one-sided subshift of  μ nite type. We 
describe the thermodynamic formalism for this setting, 
as developed by Bowen and Ruelle ([Bow1, Bow2, 
Rue1, Rue2]). We state the results which give the 
existence of a Gibbs measure and the existence and 
uniqueness of an equilibrium measure on a one-sided 
topologically exact subshift of  μ nite type. Finally, in 
Theorem, a new notion of Haar basis for the Hilbert 
space (Here, ( μ 1A ; ) denotes a one-sided 
topologically exact subshift of  μ nite type and  μ  
denotes a Gibbs measure with support equal to  μ 1A 
.) This concept enables us to describe in a natural way 
the altration on L2( μ 1A ; B;  μ ) induced by the 
Gelfand-Na μ  μ mark-Segal completion and the AF-
structure of the C μ -algebra of complex-valued 
continuous functions de μ ned on  μ 1A . Thus, we are 
able to re μ ne and develop the spectral triple of 
Antonescu-Ivan and Christensen's for an AF C μ -
algebra, in the setting of a one-sided topologically 
exact subshift of  μ nite type. The  μ nal section of this 
chapter, iT contains a discussion of three renewal 
theorems for fractal sets and topologically exact 
subshifts of  μ nite type. A description of the renewal 
theorems presented in [Fal3, Lal, GH] is given and it is 
shown how these results lead to various interesting 
counting results. Speci μ cally, we derive the following. 

1. Let f0; 1g  μ  E  μ  [0; 1] denote a non-empty 
compact self-similar set whose iterated 
function system of similarities satis μ es the 
strong separation condition. Set  μ  equal to 
the Hausdor μ  dimension of E and let fIk  μ  
[0; 1] : k 2 Ng denote the set of 
complementary intervals of E. Let E : (0;1) ! R 
be de μ ned, for each r 2 (0;1), by 
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RESULTS AND DISCUSSION 

This chapter divides into two main sections: Section 
4.1, a version of which has been recently published in 
[FS] by Falconer and Samuel and Section 4.2, which 
extends the results of Antonescu-Ivan and Christensen 
[AIC1]. In Section 4.1 we begin by describing Connes' 
construction of a spectral triple (A;H;D) for a non-
empty compact totally disconnected subset E of R with 
no isolated points. Then in Subsection 4.1.1 we 
investigate the geometric properties of (A;H;D). 
Specifically, we explore the relationships between the 
following concepts. 

1. The metric dimension of (A;H;D) and the 
Hausdor μ  dimension dimH(E) =:  μ  of E  

2. The noncommutative volume of (A;H;D) and 
the Minkowski content of E, provided that E is 
Minkowski measurable 

3. The noncommutative volume of (A;H;D) and 
the measure theoretical entropy of the 
normalised  μ -dimensional Hausdor μ  
measure on E with respect to S, where E is a 
selfsimilar set with associated iterated function 
system S satisfying the strong separation 
condition.  

4. The noncommutative integral given by (A;H;D) 
and the normalised  μ -dimensional Hausdor μ  
measure on E . 

5. Connes' pseudo metric given by (A;H;D) and 
the Monge- Kantorovitch metric on the space 
of Borel probability measures on E (see the 
concluding remarks of Subsection). 

BASIC CONCEPTS 

In this section we set out basic terminology and 
notation that will frequently be encountered. 

1. Let N; Z;Q;R, and C denote the sets of all 
natural, integer, rational, real and complex 
numbers, respectively. It is assumed that the 
natural numbers exclude zero, and so, let N0 
denote the set of non-negative integers. 

2. For a subset E of Rn let jEj denote the 
Euclidean diameter of E and let E denote the 
closure of E, that is, the small closed subset of 
Rn containing E. Further, let @E denote the 
closure of E minus the interior of E, where the 
interior of E is de μ ned to be the largest open 
subset of Rn which is fully contained in E. 

3. For each z 2 C, the same symbol is used for 
the (complex) norm of z, that is, jzj := (zz)1=2. 
4. Two notions which we will repeatedly use 
are those of comparability and asymptoticity.  

4 (a) For f; g : R ! [0;1) and x0 belonging to the 
extended real numbers, we say that f is 
comparable to g as x tends to x0 if there exist 
constants c1; c2 > 0 such that for all x su μ 
ciently close to x0 (and in the case that x0 =  μ 
1, for all x su μ ciently large, respectively su μ 
ciently small), we have that c1f(x) 6 g(x) 6 
c2f(x). We write f  μ    as x tends to x0.  

(b) For f; g : R ! R and x0 belonging to the 
extended real numbers, we say that f is 
asymptotic to g as x tends to x0 (and in the 
case that x0 =  μ 1, for all x su μ ciently large, 
respectively su μ ciently small) if lim x!x0 
f(x)=g(x) = 1. We write f  μ  g as x tends to 
x0. 

5. For a topological space (X; T ) and a 
continuous function T : X ! X, two continuous 
functions g; h : X ! R are said to be 
cohomologous with respect to T if there 
exists a continuous function  μ  : X ! R such 
that g � h =  μ  �  μ   μ  T. This difference is 
called the co-boundary of g and h with 
respect to T. 

6. A topological space is called totally 
disconnected if and only if its connected 
components consist of single points. If a 
topological space has no open set which 
consists of a single point, then we say it has 
no isolated points. 

7. Let (X; T ) denote a topological space. A 
subset Y of X is called discrete if and only if, 
for all y 2 Y , there exists U 2 T such that Y \ 
U = fyg 8. For a topological space (X; T ), let 
B denote the Borel  μ -algebra, that is, the  μ 
-algebra generated by the open sets of X. 
Two  μ nite measures  μ 1 and  μ 2 on B are 
said to be equivalent, if for each B 2 B we 
have that  μ 1(B) = 0 if and only if  μ 2(B) = 
0.9. Let  μ  denote a  μ nite Borel measure on 
a topological space (X; T ). The support of  μ 
, denoted by supp( μ ), is de μ ned to be the 
set of all points x 2 X for which every open 
neighbourhood of x has positive measure. 

ANALYSIS OF THE STUDY 

Here we describe and develop aspects of coarse 
multifractal analysis in such a way that allows for the 
introduction of an analogous notion within the theory 
of noncommutative geometry (see Subsection 4.1.2). 
The  μ nal result of this subsection (Theorem 2.1.20) 
will play a vital role in the formulation of this new 
notion. This is a new result which allows for the 
calculation of the coarse multifractal box-counting 
dimension of the support of a measure  μ  on R in 
terms of the complement of supp( μ ), provided supp( 
μ ) is compact and strongly porous. Multifractal 
analysis originated from statistical mechanics and 
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was later adapted to dynamical systems. It was 
developed by two independent groups of 
mathematicians and physicists. The fIrst approach can 
be traced back to the work of Mandelbrot, who in 
[Man1, Man2] suggested that the distribution of 
intermittent dissipation of energy in highly turbulent uid 
ows is \multifractal" in nature and studied it by 
calculating its moments. The second approach is due 
to Grassberger, Hentschel and Procaccia who in [Gra, 
GP, HP] generalised the work of R μ enyi [R μ en]. 
These two approaches were merged in the seminal 
paper [HMJPS].  

Multifractals represent a move from the geometry of a 
metric space (X; d) to the geometric properties of 
measures supported on X. The distribution of the mass 
of such a measure  μ  may vary widely over X. By 
studying the local dimension of  μ  at each point of X, 
one obtains a family of sets referred to as \level sets". 
These are the intrinsic objects which multifractal 
analysis is predominantly concerned with. A number of 
approaches to multifractals have been developed. In 
what follows, we aim to introduce the coarse 
multifractal spectra for compact subsets of R. First we 
introduce the Hausdor μ  dimension spectrum. Note 
that many of the ideas that follow can be extended to 
higher dimensions. However, as we are primarily 
interested in fractal subsets of R we state (and where 
necessary prove) the results for compact subsets of R.  

For a  μ nite Borel measure  μ  on R, we respectively 
de μ ne the lower and upper local dimension of  μ  at x 
2 supp μ by  

 

If these coincide, we refer to the common value as the 
local dimension of _ at x, and denote it by dim_(x). 
Further, we set dim_(x) := 1 if x lies outside the 
support of _ and that _(x) = 0 if x is an atom of x. As a 
matter of interest, we note that the upper and lower 
local dimensions are measurable functions. This 
follows from the fact that they are upper and lower 
semi-continuous, respectively. 

Since __ is a Gibbs measure and since we have that 

D (__1A) = 0, by the triangle 
inequality and by Parseval's identity (Theorem II:6 of 
[RS]), there exists a positive constant C dependant on 
_ such that for each k;m 2 N and a 2 A, we have that 

 

Further, by using the fact that D__(__1A) = 0, applying 
the triangle inequality and applying Parseval's identity 
(Theorem II:6 of [RS]), for each k 2 N and a 2 C(_1A 
;C) 
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