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Abstract – In this paper we bring together several techniques in the theory of non-self-adjoint operator 
algebras and operator systems. We begin with classification of non-self-adjoint and self-adjoint operator 
algebras constructed from C*-correspondence and more specifically, from certain generalized Markov 
chains. We then transitions to the study of noncommutative boundaries in the sense of Arveson, and their 
use in the construction of dilations for families of operators arising from directed graphs. Finally, we 
discuss connections between operator systems and matrix convex sets and use dilation theory to obtain 
scaled inclusion results for matrix convex sets. We begin with classification of non-self-adjoint operator 
algebras. In Chapter 3 we solve isomorphism problems for tensor algebras arising from weighted partial 
dynamical systems. 
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INTRODUCTION 

The study of operator algebras, and particularly C_-
algebras, has been a very active area of research in 
recent years, spearheaded by Elliott's classfication 
program for large classes of simple C_-algebras. 
Structural results for operator algebras often establish 
connections to classical dynamical theories. One very 
good example for this phenomenon is the work of 
Elliott in and on classification of approximately finite 
dimensional and real-rank zero circle C_-algebras in 
terms of K-theory. Using this work, Giordano, Putnam 
and Skau [56] were able to classify Cantor minimal Z-
systems in terms of orbit equivalence. However, 
operator algebras need not be simple nor self-adjoint 
in general, yet they still yield many interesting 
invariants for the underlying dynamics. and deals with 
non-commutative boundaries for different classes of 
non-self-adjoint operator algebras along with the 
classification of these operator algebras and their 
associated boundaries. In the realm of real algebraic 
geometry and convex optimization, many applications 
were found for matricial domains defined by a linear 
matrix inequality, especially in the work of Helton, Klep 
and McCullough. A good instance of this is the solution 
of Helton, Klep, McCullough and Schweighofer [64] to 
the matrix cube problem in optimization, which was 
considered by Ben-Tal and Nemirovski (New Series, 
2004). More precisely, using dilation, they find optimal 
scales fi (m) such that for any LMI domain DB, with B 
comprised of matrices whose ranks are at most m, and 
[fi1; 1]d _ DB(1), we have that every contractive d-
tuple X = (X1; :::;Xd) belongs to fi (m)DB. On the other 
hand, in operator algebras, CP maps are the fabric for 
exactness, amenability and nuclearity-type properties. 

In Kavruk, Paulsen, Todorov and Tomforde 
systematically study nuclearity related properties of 
operator systems, and relate them to many important 
problems from quantum information theory and 
operator algebras. One such problem is the well-
known Connes' We next give an introduction for this 
thesis, starting with the first part. Aside from this 
introduction, more specific details can be found in the 
introductions to any of the non-preliminary chapters. 

System M in a C*-cover (ι, B) is that for every ∗-
representation π : B → B(H), the restriction π|M has 
the unique extension property. In particular, since the 
Shilov ideal JM is contained in the intersection of 

kernels of all ∗-representations, it must be trivial, so 

that the C*-envelope must be B = C∗(M). 

BOUNDARY THEORY FOR NON-
UNITAL ALGEBRAS 

We explain how to define the notions of maximality 
and the unique extension property for 
representations of non-unital operator algebras, in a 
way that yields essentially the same theory as in the 
unital case. For an operator algebra A, we will say 
that a map ϕ : A → B (H) is a representation of A if it 
is a completely contractive homomorphism. 

If A ⊆ B (H) is a nonunital operator algebra 

generating a C*algebra B=C∗(A), atheorem of 
Meyer [88, Section 3] (see also [18, Corollary 2.1.15]
) states that every representation ϕ : A →B(K) extend
s to a unital representation ϕ1 on the unitization A1 =

 A⊕CIHof A by specifying ϕ1(a + λIH) = ϕ(a) + λIK. T
his theorem allows one to show that everyrepresenta
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tion υ has a completely contractive and completely pos
itive extension to B via Arveson‘s extension theorem. 
In 
fact, this is a version of Arveson‘s extension theorem 
for non unital operator algebras. Meyer‘s theorem also 
shows that A has a unique (one-point) unitization, in 
the sense that if (ι, B) is a C*cover for the operator 
algebra A, and B⊆B (H) is some faithful representation 

of B, then the operator algebraic structure on A1 ∼ ι(A) 
+ C1H is independent of the C*-cover and the faithful 
representation of B. 

Next, we discuss how to extend the notions of 
maximality and the unique extension property to non 
unital operator algebras. 

Definition 2.1.1. Let A ⊆ B(H) be an operator algebra g
enerating a C*-algebra B. 

1. We say that a representation ρ : A → B (K) 
has the unique extension property 
(UEPfor short) if every completely contractive 
and completely positive map π : B → B(K) 

extending ρ is a ∗-representation. 

2. We say that a representation ρ : A → B (K) is 
maximal if whenever π is a represen-

tation dilating ρ, then π = ρ ⊕ ψ for some repr
esentation ψ. 

Remark 2.1.2. When the maps in the definitions above
 are not assumed multiplicative, there are instances 
where the UEP is satisfied vacuously. We 
thank Rapha¨el Clouˆatre for bringing these issues 
to our attention. 

Indeed, Suppose A is a non-unital operator algebra 
containing a self-adjoint positive element P and let ρ : 
A → B be a completely contractive homomorphism. 
The map –ρ is completely contractive, but cannot be 
extended to a completely contractive completely 

positive map on B = C∗(A), as ρ must send P to −P . 
Hence, −ρ vacuously has the UEP. 

Furthermore, when ρ is not maximal, the map –ρ is a 
completely contractive map that admits a non-
trivial completely contractive dilation, coming from the 
one for ρ. Hence, −ρ is also not maximal. Thus, we 
see that if we drop the multiplicativity assumptions on 
our definitions above, the UEP and maximality would 
not be equivalent. 

By a similar proof to [10, Proposition 2.2], and by the 
Arveson extension theorem for non-unital operator 
algebras via Meyer‘s theorem, we get that maximality 
is equivalent to the UEP. 

Consequentially, since maximality does not depend on 
the choice of C*-cover, the unique extension property 
for representations does not depend on the choice of 
C*-cover, even for non-unital operator algebras. We 

will often refer to this fact as the‖ invariance of the 
UEP ‖. 

For a representation ρ it is easy to see that ρ is 
maximal if and only if ρ1 is maximal. Hence, as 
maximality is equivalent to the UEP, we see that a 
representation ρ on A has the UEP if and only if its 
unitization ρ1 has the UEP. Suppose A is an operator 
subalgebra of B (H), and ρ: A → B (K) is a 

representation. We can write ρ := ρnd ⊕ 0(α), where 
0 : A → C is the zero map and α is some multiplicity, 
such that ρnd is the non-egenerate part in the sense 

that ρnd(a) = ρ(a)|L with L := C∗(ρ(A))K. 

When A is unital, we get that any completely 
contractive completely positive extension of 0 : 

A → C to B = C∗(A) must be 0. As the direct sum of 
representations with the UEP still has the UEP, we 
see that ρ has the UEP if and only if the unital 
representation ρnd has the UEP. In the case where A 
is separable, non-unital and contains a positive 
approximate identity, we let 01 : A1 → C be the 
unitization of the zero map, which is a unital 
representation. 

Since this map extends uniquely to a map on the 

operator system S = A1 + (A1)∗, which we still denote 

by 01, and as A ∩ A∗ contains a positive approximate 
identity, by [12, Theorem 6.1] we see that 01 has the 
UEP when restricted to A1. Hence, the restriction 
0 = 01|A has the UEP. 

Hence, if we assume that A is separable and has a 
positive approximate identity, we still have that ρ 
has UEP if and only if ρnd has UEP. These assumpti
ons will be satisfied by all non-
unital operator algebras discussed in this paper. 

The C*-envelope of a non-unital operator algebra can 
also be computed from the C*-envelope of its 

unitization. More precisely, as the pair (C∗(A), ι) 

where C∗(A) is the C*- 

Subproduct systems and their operator algebras 
C*-correspondences 

We assume that the reader is familiar with the basic 
theory of Hilbert C*-modules, which can 
be found in [84, 85, 97]. We only give a quick 
summary of basic notions and terminology as we 
proceed, so as to clarify our conventions. 

Definition 2.2.1. Let A be a C*-algebra, E is called an 
inner product module over A if it is a right A-module, 
with an A-valued inner product ·, · on E × E, such that 
the following conditions are satisfied for 
all x, y, z ∈ E, λ ∈ C and a ∈ A. 

1. A-linearity in the second variable: 

x, y + λz = x, y + λ x, z , x, ya = x, y a; 
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2. Hermitian symmetry : x, y = y, x ∗; 

3. Positivity: x, x ≥ 0; 

4. Definiteness: x, x = 0 implies x = 0. 

If E is an inner product module over A, then a norm on 
E is given by ||x|| = || x, x ||1/2, and if E is complete 
with respect to this norm, then E is called a Hilbert C*-
module over A. 

Let E and F be Hilbert C*-modules over A, and let T: 
E→F be a map. Then T is called adjointable if there is 

a map T ∗ : F → E such that for all x ∈ E and y ∈ F, y, 
T x = T ∗y, x. Unlike in the Hilbert space case, not all 
bounded linear maps on a Hilbert C*-
module are adjointable. The set of all adjointable maps 
from E to F is denoted by L(E, F ), and we denote 
L(E):= L(E, E) the adjointable operators on E. An 
adjointable map is automatically a bounded A-module 
map by the Uniform Boundedness Principle. 

Definition 2.2.2. Let A be a C*-algebra and E a Hilbert 
C*-module over A. If in addition, E has a left A-module 

structure given by a ∗-homomorphism υ: A → L(E), we 
call E a C*-correspondence over A. We will say that E 
is faithful if υ is faithful, and that E is essential if υ (A) 
E = E. 

Subproduct systems 

The following is a C*-algebraic version of [113, 
Definition 1.1] for the semigroup N. It was also given in 
[118, Definition 1.4] for essential C*-correspondences. 

Definition 2.2.7. Let A be a C*-algebra, let X = {Xn}n∈N 
be a family of C*-corres-pondences over A and let U = 

{Un,m : Xn ⊗ Xm → Xn+m} be a family of bounded 
bimodule maps. We will say that (X, U ) is a 
subproduct system over A if the following conditions 
are met: 

1. X0 = A. 

2. The maps U0,n and Un,0 are given by the left 
and right actions of A on Xn respectively. 

3.
 Un,m is an adjointable coisometric ma

p for every non-zero n, m ∈ N. 

4. For every n, m ∈ N we have the associativity 
identity Un+m,p (Un,m ⊗ IdXp) = Un,m+p 

(IdXn ⊗ Um,p). 

In case the maps Un,m are unitaries for non-zero n, m 

∈ N, we say that X is a product system. Example 2.2.8. 
If E is a C*-correspondence over A, define Prod (E) = 

{Prod (E)n} by E E E⊗(n+m) when n, m are non-zero. 
Then (P rod(E), U E) is a product system. 

Example 2.2.9. Let H be a Hilbert space as a C*-
correspondence over C. Let pn be the projection of 

H⊗n onto the symmetric subspace of H⊗n given by 

pn (ξ1 ⊗ ... ⊗ ξn) = 1n! σ∈ ξσ−1(1) ⊗ ... ⊗ ξσ−1(n). 

 

Definition 2.2.10. Let (X, U X ) and (Y, U Y ) be two 
subproduct systems over A and B respectively. A 

family V = {Vn}n∈N of maps Vn: Xn → Yn is called a 
morphism of 
subproduct systems from (X, U X ) to (Y, U Y ) if 

1. The map ρ := V0 : A → B is a *-isomorphism, 

2. For all n=0 the map Vn are uniformly bounded 
ρbimodule morphisms in the sense that 
supn∈N Vn < ∞, 

3. For all n, m ∈ N the following identity hold: X 
Y 

When the family V is a family of 

1. ρ-isomorphisms, such that V −1: = 
{Vn−1} is a morphism from (Y, U Y ) to (X, U 
X ), we say that X and Y are isomorphic via 

V and write X ∼ Y . 

2. ρ-unitaries, we say that X and Y are unitarily 
isomorphic via V and write X∼Y . 

We next show that that whenever (X, U ) is a product 
system, it is in fact unitarily isomorphic to a product 
system of the form (Prod (E), U E) as in Example 
2.2.8, for the C*-correspondence E = X1, and that 
any isomorphism V = {Vn} between product systems 
is determined by V1. 

Proposition 2.2.11. Let (X, U ) be a product system o
ver a C*-algebra A. Then (X, U ) is unitarily 
isomorphic to (Prod(X1), U 

X1
). Furthermore, if 

(Prod(E), U E) and (Prod(F ), U F ) are product 
systems, and V = {Vn} an isomorphism/unitary 
isomorphism between them. 

Then Vn = W ⊗n for a ρ-similarity/ρ-unitary W 
respectively, where W=V1 and ρ=V0. 

Proof. We construct a morphism of subproduct 
systems W: (Prod(X1), U X1) → (X, U ) 

comprised of Idunitaries {Wn : X⊗n → Xn} which, by 
associativity of U = {Un,m}, are uniquely determined 
inductively by the equations W1=IdX1 and Wn+m = 

Un,m ◦(Wn ⊗ Wm). Each Wn is an Idunitary, and by 
their inductive definition they intert wine the 
associativity unitary U

X1
 and U . Hence, 

(Prod(X1), U
X1

) and (X, U ) are unitarily isomorphic. 
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Stochastic matrices 

We next discuss some of the preliminaries on 
stochastic matrices, and the results in [42] for 
subproduct systems associated to stochastic matrices. 
For the basic theory of stochastic matrices and Markov 
chains on discrete spaces, we recommend [48, 
Chapter 6] and [112]. Definition 2.3.11. Let Ω be a 
countable set. A stochastic matrix is a function 

P:Ω×Ω → R+ such that for all I ∈ Ω we have 

j∈Ω Pij = 1. Elements of Ω are called states of P. To 
every stochastic matrix, one can associate a set of 
edges Gr(P ): = {(i, j)| Pij >0} and a {0, 1} – adjacency 
matrix Adj (P) representing the directed graph of P as 
an incidence matrix by way of Adj (P) ij =: Pij = 
0 : Pij > 0 Many dynamical properties of P can be put 
in terms of the directed graph QP := (Ω, Gr(P ),  r, s) of 
P , where s(i, j) = I and r(i, j) = j. We note immediately 
that in the context of stochastic matrices in this 
subsection, and in Chapter 4, we take reversed range 
and source convention to the one taken. In and the 
definition of the graph of a Markov-Feller operator as 
in paper. 

Extension theory 

We recall some facts from the theory of primitive ideal 
spectra and extension theory for C*-algebras. More 
details on primitive ideal spectra of C*-algebras can be 
found in  paper and other For an account on the Busby 
invariant and extension Let A be a C*-algebra. We 
denote by A the collection of unitary equivalenc 
classes of irreducible representations of A. On the 
other hand, we define Prim (A) to be the set of 
primitive ideals of A, where a primitive ideal is the 
kernel of an irreducible representation of A. 

The set Prim (A) comes equipped with a lattice 
structure determined by set inclusion. Next, since any 
two unitarily equivalent *representations have the 
same kernel, the map It turns out that a C*-algebra is 
type I if and only if the above map κ is a injective [57]. 

This means that up to unitary equivalence, an 
irreducible representation π is completely determined 
by its kernel Ker π. We define SSP (H) = {SSP (H)n} 

by SSP (H)n = pn(H⊗n), with subproduct maps Un,m : 

SSP (H)n ⊗ SSP (H)m → SSP (H)n+m are given by 

Un,m(x ⊗ y) = pn+m(x ⊗ y). Then (SSP (H), U ) is a 
sub product system which is not a product system. 

Operator system axiomatics 

We recall some definitions and results about operator 
system structures on Archimedean ordered unit 
spaces, as discussed in the work of Paulsen, Todorov 
and Tomforde [100]. A ∗-vector space is a complex 

vector space V together with a map ∗: V→V such that 

(v∗)∗ = v and (λv + w)∗ = λv∗ + w∗ for all v, w ∈ V and λ 

∈ C. We will denote by Vsa: = {x ∈ V |x∗ = x} the 
Hermitian/self-adjoint elements in the ∗-vector space 
V. 

An ordered ∗-vector space is a pair (V, V+) such that V 
is a ∗-vector space and V+is a cone in Vsa such that 
V+∩−V+= {0}. This induces a partial order on V by 

specifying a ≤ b if and only if b−a ∈ V+. Such a cone 
V+ is called the cone of positive elements in V. 

For an ordered ∗-vector space (V, V+), we call an 

element e ∈ V an order unit if for all v ∈ Vsa there is 
r>0 such that re ≥ v. If additionally we have that re+v≥0 
for all r>0 implies v≥0 we say that e is Archimedean. 

When e ∈ V is an Archimedean order unit for an 

ordered ∗-vector space (V, V+), we will call the triple 
(V, V+, e) an Archimedean ordered *-vector space or 
AOU space for short. 

When (V, V+, e) is an AOU space, we may define the 

order norm on Vsa via v = inf {t ∈ R | − te ≤ v ≤ te}. 

It was shown in [101] that can be extended to a norm 
on V, but even though this extension is not unique, all 
such extensions yield equivalent norms. We call the 
topology induced by any extension of to a norm the 
order topology induced from V+ on V. 

Let (V, V+, e) be an AOU space. We denote by V the 
collection of continuous linear functionals f: V→C with 
the order topology on V induced by V+. We may the 

define a operation f → f ∗ ∈ V given by f ∗(v) = f (v∗). 
This turns V into a ∗-vector space. The set V+⊆V of 
all positive linear functionals contains the set  S(V) of 
states on Vcomprised of those positive linear 
functionals f such that f (e) = 1. 

When V is a ∗-vector space, the set of all n×n 

matrices Mn(V) also becomes a ∗-vectors space with 

the operation [vij]∗ = [vji] for vij ∈ V. We say that P:= 
{Pn} is a matrix ordering for V if (Mn(V ),  Pn) is an 
ordered ∗-vector space, and for every n, m ∈ N and X 

∈ Mn,m we have X∗PnX⊆Pm, and we call (V, P) a 
matrix ordered space. Given a matrix ordering {Pn} 

on a ∗-vector space we will say that e ∈ V is a matrix 
ordered unit if en=diag (e, e, ...e) is an order unit for 

(Mn(V), Pn) for all n ∈ N and that it is matrix 
Archimedean order unit if each en is an Archimedean 

order unit for (Mn(V), Pn) for all n ∈ N. When (V, {Pn}) 
and (W, {Rn}) are matrix ordered spaces, we say that 
a linear map υ: V→W is completely positive if for 

each [vij] ∈ Pn we have that [υ(vij)] ∈ Rn. We say that 
υ is a complete order isomorphism if υ is bijective 
with a completely positive inverse. 

Definition 2.4.7. A triple (V, {Pn}, e) is called an 
(abstract) operator system if (V, {Pn}) is a matrix 
ordered space, and e is a matrix Archimedean order 
unit for it. 
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