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Abstract – Theo perator algebras  associated to dynamical/topological/analytic objects, and their 
classification via these objects, have been the subject of study by many authors for almost 50 years, 
beginning with the work of Arveson [4] and Arveson and Josephson [13]. The main theme of this line of 
research, as is the main theme of this Paper, is to identify the extent to which the dynamical objects 
classify their associated non-self operator algebras. We shall mainly focus on classification of non-self-
adjoint adjoint tensor operator algebras arising from a single C*-correspondence over a commutative C*-
algebra, although a profusion of results have been obtained in other contexts to mention only some. 
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INTRODUCTION 

In this chapter, which is based on, we provide 
classification results for tensor algebras arising from 
weighted partial systems (WPS for short). Our 
objective is to show that WPS yield tensor algebras 
that are still completely classifiable up to 
bounded/isometric isomorphisms, while covering many 
examples of such classification results. For instance, 
those for multiplicity free finite directed graphs  and for 
Peters‘ semi-crossed product. 

A weighted partial system on a compact space X is a 
pair (σ, w) of d-tuples (σ1, ..., σd) and (w1, ..., wd) of 
partially defined continuous functions σi: Xi → X and 
wi : Xi → (0, ∞) for Xi clopen. WPS generalize many 
classical constructions such as non-negative matrices, 
continuous function on a compact space, multivariable 
systems, distributed function systems, graph directed 
systems and more. 

To each WPS (σ, w) we associate a multiplicity free 
topological quiver (in the sense of) that encodes some 
information on it. This topological quiver gives rise to a 
C*-correspondence C(σ, w), as constructed in. We 
completely characterize these C*-correspondences up 
to unitary isomorphism and similarity, in terms of 
conjugacy relations between the WPS that we call 
branch-transition conjugacy and weighted-orbit 
conjugacy respectively. 

We then associate a tensor algebra T+(σ, w) to C 
(σ, w) as one usually does for general C*-
correspondences, which coincides with 
T+(Prod(C(σ, w))) as in subsection 2.2.3. 
Characterization of the C*-correspondences allows for 

classification of these tensor algebras up to 
isometric/bounded isomorphism and in some cases 
up to algebraic isomorphism, in terms of the WPS (σ, 
w). The following are our main results 
(See Theorems 3.5.6 and 3.5.7). Suppose (σ, w) and 
(τ, u) are WPS over compact spaces X and Y 
respectively. 

1. T+(σ, w) and T+(τ, u) are isometrically 
isomorphic if and only if C(σ, w) and C(τ, u) 
are unitarily isomorphic if and only if (σ, w) 
and (τ, u) are branch-transition conjugate. 

2. T+(σ, w) and T+(τ, u) are boundedly 
isomorphic if and only if C(σ, w) and C(τ, u) 
are similar if and only if (σ, w) and (τ, u) are 
weighted-path conjugate. If in addition the 
clopen sets Xi (which are the domains of 
each σi) cover X, the above is equivalent to 
having an algebraic isomorphism between 
T+(σ, w) and T+(τ, u). 

The solution to these isomorphism problems require 
an adaptation of a new method in the analysis of 
character spaces due to Davidson, Ramsey and 
Shalit in, used in the solution of isomorphism 
problems of universal operator algebras associated to 
tuples of operators subject to homogeneous 
polynomial constraints. 

One of the main thrusts of the work in this chapter is 
the use of these classification results to show that, in 
general, the (completely) isometric isomorphism and 
algebraic/(completely) bounded isomorphism 
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problems are distinct in the sense that they require 
separate criteria to be solved (See Example 3.5.8). 

This chapter contains six sections, including this 
introductory section. In Section 3.2 we introduce the 
notion of a weighted partial system and define three 

different notions of conjugacy between WPS called 
branch-transition conjugacy, weighted-orbit conjugacy 
and graph conjugacy. We then associate a C*-
correspondence to every WPS in such a way that the 
three conjugacy relations above correspond to unitary 
isomorphism, similarity and isomorphism between the 
C*-correspondences. We give examples that show 
that these three conjugacy relations are distinct. 

Weighted partial systems 

We define the notion of weighted partial system, and 
examine it associate a completely positive map and a 
topological quiver. 

Definition 3.2.1. Let X be a compact space. Advariable 
weighted partial system (WPS for short) is a pair (σ, w) 
where σ = (σ1, ..., σd) is comprised of continuous 
maps σi: Xi → X where each Xi is clopen in X, and w = 
(w1, ..., wd) is comprised of continuous non-vanishing 
weights wi : Xi → (0, ∞). 

When wi = 1 for all 1 ≤ I ≤ d, then the information 
on the weights is redundant, and in this case we 
replace (σ, 1) by σ and call it a d-variable (clopen) 
partial system. Partial systems were used under the 
name of‖ quantized dynamical systems‖ by Kakariadis 
and Shalit to classify tensor algebras associated to 
monomial ideals in the ring of polynomials in non-
commuting variables (Corollary 8.12]). 
Weighted partial systems provide us with concrete exa
mples of Markov-Feller maps and topological quivers. 

1. The operator associated to (σ, w) is a positive 
linear map P (σ, w) : C(X) → C(X) given by P 
(σ, w) (f ) (x) = wi (x) f (σi(x)). :x∈Xii 

2. The quiver associated to (σ, w) is the quintuple 
Q(σ, w) = (X, Gr(σ), r, s, P (σ, w)) where Gr(σ) 
is the (union) cograph of σ, i.e. the union of the 
cographs of σi given by Gr(σ) = 
∪di=1{ (σi(x), x) | x ∈ Xi }. The range and 
source maps are given by r(σi(x), x) = σi(x), 
s(σi(x), x) = x and Radon measures 

Tensor algebras 

In this section we relate isomorphisms of product 
systems to graded isomorphisms, and to semi graded 
isomorphism of associated tensor algebras. Definition 
3.3.1. Let E and F be C*-correspondences over A and 
B respectively. Anisomorphisms ɸ: T+(E) → T+(F) that 

satisfies ɸ (T+(E)n) = T+(F )n for all n ∈ N is called 
graded For a C*-correspondence E, let ΨE: E → T+(E) 
1 be the isometric Banach bimodule 1) not require ρ-
similarities to be adjoin table in item (2) of Definition 
2.2.5. 

Theorem 3.3.2. Let E and F be C*-correspondences 
over commutative C*-algebras A and B respectively. 
Then, 

1. If V: E → F is a ρ-similarity for some ∗-
isomorphism ρ between A and B, then there 
exists a graded completely bounded 
isomorphism AdV : T+(E) → T+(F) such that 
AdV |A = ρ with max {AdV cb, Ad−1cb} ≤ sup 

V ⊗n · sup (V−1)⊗n. n∈N n∈N. 

2. If ϕ: T+(E) → T+(F) is a bounded graded 
isomorphism, then ρϕ:= ϕ|A : A → B is a *-
somorphism and Vϕ: E→F uniquely 

determined by SVϕ(ξ) = ϕ(Sξ) for ξ ∈ E yields 

a ρϕ-similarity satisfying sup (Vϕ)⊗n ≤ ϕ and 

sup (V−1)⊗n ≤ ϕ−1. n∈Nn∈N 

Moreover, the operations (1) and (2) are inverses of 
each other in the sense that ϕ = AdVϕ and V = VAdV, 
and in particular every bounded graded isomorphism ϕ 
is completely bounded with ϕ cb ≤ ϕ · ϕ−1. 

Isometric isomorphisms are also automatically base 
detecting. Indeed, let E and F be C*-
correspondences over C*-algebras A and B and let ϕ: 
T+(E) → T+(F) be an isometric isomorphism. Since 

T+(F) ⊆ T (F), we can regard ϕ as a map into the 
Toeplitz C*-algebra. 

Thus, ɸ|A: A→T (F) is an isometric homomorphism, 
and is hence necessarily positive and preserves the 

involution from A to T (F). Thus, ϕ(A) = ϕ(A)∗ ⊆ T+(F )∗ 
⊆ T (F), and we must have that ɸ (A) ⊆ T+(F) ∩ T+(F)∗ 
= B. Thus we have in fact that ɸ (A) ⊆ B, and the 
symmetric argument shows that ɸ−1(B) ⊆ A, and 
soɸρɸ−1 is the inverse of ρɸ, and ϕ is base-detecting. 

In the forthcoming definition, we relax the assumption 
of gradedness of an isomorphism while maintaining 
base-detection. The following concept of semi-
gradedness appeared in the work of Muhly and Solel 
in section 5 of [92, Section 5] where they resolve the 
isometric isomorphism problem for tensor algebras 
arising from aperiodic C*-correspondences, and was 
also used in [42] to provide classification for tensor 
algebras arising from stochastic matrices, in terms of 
the matrices. 

Isomorphisms 

In this section we adapt a new method in the analysis 
of character spaces due to Davidson, Ramsey and 
Shalit in, and use this to construct a bounded/isometric 
semi-graded isomorphism from any bounded/isometric 
isomorphism of our tensor algebras respectively. 

We then use this to provide two theorems that 
separately deal with classification up to bounded 
isomorphism and classification up to isometric 
isomorphism, which turn out to yield two distinct 
equivalences. 
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We first provide a criterion for automatic continuity, 
that will help answer the algebraic isomorphism 
problem for our tensor algebras, under the assumption 
that the union of Xi covers X, where Xi are the clopen 
domains of definition for σi‘s. We will follow the ideas 
of Davidson, Katsoulis and Kribs used in. For operator 
algebras A and B suppose we have a surjective 
homomorphism ɸ: A → B. 

Let S(ɸ) = {b ∈ B| there is a sequence (an) in A with 
an→0 and ɸ (an) → b} It is readily verified that the 
graph of ɸ is closed if and only if S(ɸ) = {0}, hence, by 
the closed graph theorem ɸ is continuous if and only if 
S(ɸ) = {0}. The following is an adaptation of a lemma 
by Sinclair, the origins of which can be traced back to. 

5.1 (Sinclair). Let A and B be Banach algebras and ɸ: 
A→B be a surjective algebraic homomorphism. Let 

(bn) n∈N be any sequence in B. Then there exists N ∈ 
N such that for all n ≥ N, b1b2...bnS(ɸ) = 
b1b2...bN S(ɸ) and S(ɸ)bn...b2b1 = S(ɸ)bN ...b2b1. 

SCOPE OF STUDY 

The fundamental structures of direct variable based 
math are vector spaces. A vector space over a field F 
is a set V together with two parallel operations. 
Components of V are called vectors and components 
of F are called scalars. The main operation, vector 
expansion, takes any two vectors v and w and yields a 
third vector 22 v + w. The second operation, scalar 
duplication, takes any scalar an and any vector v and 
yields another vector av. The operations of expansion 
and increase in a vector space must fulfill the 
accompanying aphorisms. In the rundown underneath, 
let u, v and w be self-assertive vectors in V, and an 
and b scalars in F. 
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