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Abstract – In this article, we manage iterative methods for approximation of fixed points and their 
applications. We initially talk about fixed point theorems for a non-expansive mapping or a group of non-
expansive mappings. Specifically, we express a fixed point hypothesis which addressed certifiably a 
problem posed during the Conference on Fixed Point Theory. We manage weak and strong union 
theorems of Mann's compose and Halpern's write in a Banach space. At last, utilizing these results, we 
consider the plausibility problem by raised blends of non-expansive withdrawals and the curved 
minimization problem of finding a minimizer of an arched function. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTRODUCTION 

Give C a chance to be a nonempty shut arched subset 

of a genuine Hilbert space H and let  be an 
appropriate curved lower semi continuous function of 

H into Consider a convex minimization 
problem 

 

The number  is called an optimal value, C is called 

an admissible set and  is called an 

optimal set. Next, define a function as 
follows : 

 

Then,  is a proper lower semi continuous convex 

function of H into  So, we consider the 

convex minimization problem  

where  is a proper lower semi continuous convex 

function of H into  For such a  we can define 

a multivalued operator  on H by 

 

for all . Such a  is said to be the sub differential 
of  Let C be a nonempty closed convex subset of a 

real Hibert space H. Then a mapping  is 
called non-expansive on C if 

 for all  

We denote by F) the set of fixed point of T. Let 

 Then, we can define a multivalued 
operator B from H to H by 

 

for all Inversely, if B is a multivalued operator 
from H to H. then we can define a set A in H x H 

by . So, it is natural to 
regard a set in H x H in the same light with a 

multivalued operator from H to H. Let  
Then, we define the domain of A and the range of A 
as follows: 

 

We also define a multivalued operator  from H to H 

by  for all  From this 

definition, we have  An operator 

 is accretive if for  

 

If A is accretive, we can define, for each positive the 

resolvent  
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by  We know that is a non-expansive 

mapping. An accretive operator  is called 
m-accretive if 

 is a proper 
lower semi continuous convex function, then  is a m-
accretive administrator. For a m-accretive 
administrator A, we can think about the following 
beginning value problem: 

(**) 

where  is an element of  Then, it is well known 

that  has a unique strong solution  

Putting  we know that the family 

 of mappings on  satisfies the 
following conditions: 

(i)  for every 

 

(ii)  for every  

(iii) for each  is continuous; 

(iv)  for every  

and  

Such a family  is called a one 

parameter non-expansive semi group on  see 
Brezis. We also know that 

 

where  is the set of fixed points of  Further, 

we have that for  

 

Accordingly, an arched minimization problem is 
proportionate to a fixed point problem for a non-
expansive mapping or a group of non far reaching 
mappings. Further, we realize that one method for 
illuminating  is the proximal point calculation initially 
presented by Martinet (1970). The proximal point 

calculation depends on the thought of resolvent i.e., 

 

introduced by Moreau. The proximal point algorithm is 

an iterative procedure, which starts at a point  

and generates recursively a sequence  of points 

 where  is a sequence of positive 

numbers; see, for instance, Rockafellar (1976). On the 

other hand, let  be a finite family of real 
valued continuous arched functions on a Hilbert space 
H. The problem is to discover a solution of the limited 
raised disparity framework, i.e., to discover such a 

point  that  

Such a problem is known as the practicality problem. 
This problem is likewise connected with approximation 
of fixed points. 

In this article, we initially examine fixed point theorems 
for a non-expansive mapping or a group of non-
expansive mappings. Specifically, we express a fixed 
point hypothesis which addressed positively a problem 
postured amid the Conference on Fixed Point Theory 
and Applications held at CIRM, Marseille-Luminy, 
1989. At that point we examine nonlinear ergodic 
theorems of Baillon's write for nonlinear semi groups of 
non-expansive mappings. Specifically, we state 
nonlinear ergodic theorems which addressed 
certifiably the problem postured amid the Second 
World Congress on Nonlinear Analysts, Athens, 
Greece, 1996. Next, we manage weak and strong 
meeting theorems of Mann's compose and Halpern's 
write in a Banach space. At last, utilizing these 
results, we consider the achievability problem by 
arched blends of non-expansive withdrawals and the 
curved minimization problem of finding a minimizer of 
a raised function. 

PRELIMINARIES 

Let C be a nonempty closed convex subset of a 
Banach space E and let T be a mapping of C into C. 
Then we denote by R(T) the range of T. A mapping T 
of C into C is said to be asymptotically regular if for 

every converges to 0. Let D be a 
subset 

of C and let P be a mapping of C into D. Then P is 

said to be sunny if  

whenever for and A 
mapping P of C into C is said to be a retraction 

if  If a mapping P of C into C is a retraction, 

then for every A subset D of C is 
said to be a sunny non-expansive retract of C if there 
exists a sunny non-expansive retraction of C onto D. 

Let E be a Banach space. Then, for 

every with the modulus of convexity of 
E is defined by 

 

A Banach space E is said to be uniformly convex if 

 for every  E is also said to be strictly 

convex if  for  with  
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and A uniformly convex Banach space is strictly 
convex. 

Let E be a Banach space and let  be its dual, that is, 
the space of all continuous linear functionals  on E. 

The value of  at  will be denoted by 

 With each  we associate the set 

 Using 
the 

Hahn-Banach theorem, it is immediately clear that 
 for any  Then the multivalued operator 

 is called the duality mapping of E. Let 

 be the unit sphere of E. Then a 
Banach space E is said to be smooth provided 

 exists for each  At the point when 
this is the case, the standard of E is said to be 
Gateaux differentiable. It is said to be Frechet 
differentiable if for every x in {/, this cutoff is achieved 
consistently for y in U. The space E is said to have a 
consistently Gateaux differentiable standard if for each 

 the limit is attained uniformly for  It is 
notable that if E is smooth, at that point the duality 
mapping J is single valued. It is additionally realized 
that if E has a Frechet differentiable standard, at that 
point J is standard to standard continuous. A shut 
curved subset C of a Banach space E is said to have 
typical structure if for each shut bounded arched 
subset K of C, which contains no less than two points, 
there exists a component of K which isn't a diametral 
point of K. Baillon and Schoneberg (1981) likewise 
presented the following weakening of the idea of 
ordinary structure: A shut curved subset C of a Banach 
space is said to have asymptotic typical structure if for 
each shut bounded raised subset K of C, which 
contains no less than two points and each sequence 

 in K satisfying as , there is a 

point  such that  

where  is the measurement of K. It is notable that 
a shut curved subset of a consistently arched Banach 
space has ordinary structure and a conservative raised 
subset of a Banach space has typical structure. A 
Banach space E is said to fulfill OpiaVs condition if 

 and  simply 

 

where  denotes the weak convergence to x. Let S 
be a semitopological semigroup, i.e., a semigroup with 

Hausdorff topology such that for each the 
mappings  and  of S into itself are 
continuous. Let B(S) be the Banach space of all 
bounded real valued functions on S with supremum 
norm and let X be a subspace of B(S) containing 

constants. Then, an element  of  is called a mean 

on X if  We know that  is a mean 

on X if and only if  

for every  A real valued function  on X is called 
a sub mean on X if the following properties are 
satisfied: 

(i) for every  

(ii)  for every  and  

(iii)  For  implies  

(iv)  for every constant function c. 

Obviously every mean on I is a submean. The idea of 
submean was first presented by Mizoguchi and 

Takahashi (1990). For a submean  on X and  

sometimes we use  instead of For 

each and , we define elements  and 

 of B (S) given by  and 

 for all  Let X be a subspace 
of B(S)containing constants which is invariant 

under (resp. ). Then a mean  on X 
is said to be left invariant (resp. right invariant) 

if (resp. ) for all  and 
  An invariant mean is a left and right invariant 

mean. A sub mean on X is said to be left sub 

invariant if for all  and  Let 
S be a semi topological semi group. Then S is called 
left (resp. right) reversible if any two closed right 
(resp. left) ideals of S have non-void intersection. If S 
is left reversible,  is a directed system when the 

binary relation  on S is defined by  if and 

only if  Similarly, we can 
define the binary relation  on a right reversible 
semi topological semi group S. 

FIXED POINT THEOREMS 

In this area, we talk about fixed point theorems for a 
non-expansive mapping or a group of non-expansive 
mappings. The main fixed point theorem for non-
expansive mappings was built up in 1965 by Browder 
(1965). He demonstrated that if C is a bounded shut 
raised subset of a Hilbert space H and T is a non-
expansive mapping of C into itself, at that point T has 
a fixed point in C. Very quickly, both Browder and 
Gohde demonstrated that the same is valid if E is a 
consistently arched Banach space. Kirk likewise 
demonstrated the following theorem: 

Theorem 4.1 Let E be a reflexive Banach space and 
let C be a nonempty bounded shut raised subset of E 
which has ordinary structure. Give T a chance to be a 
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non-expansive mapping of C into itself Then F(T) is 
nonempty. 

After kirk's theorem, numerous fixed point theorems 
concerning non-expansive mappings have been 
demonstrated in a Hilbert space or a Banach space. 
Specifically, Baillon and Schoneberg presented the 
idea of asymptotic ordinary structure and generalized 
Kirk's fixed point theorem as follows: 

Theorem 4.2 Let E be a reflexive Banach space and 
let C be a nonempty bounded shut raised subset of E 
which has asymptotic typical structure. Give T a 
chance to be a non-expansive mapping of C into itself. 
At that point F(T) is nonempty. 

Then again, DeMarr demonstrated the following fixed 
point theorem for a commu¬tative group of non-
expansive mappings. 

Theorem 4.3 Let C be a minimized curved subset of a 
Banach space E and let S be a commutative group of 
non-expansive mappings of C into itself. At that point S 
has a typical fixed point in C, i.e., there exists  

such that  for every  

Browder demonstrated the following fixed point 
theorem without conservativeness: 

Theorem 4.4 Let C be a bounded shut raised subset of 
a consistently arched Banach space E and let S be a 
commutative group of non-expansive mappings of C 
into itself. At that point S has a typical fixed point in C 

Further, we endeavor to stretch out these theorems to 
a noncommutative semi group of non-expansive 
mappings. Give S a chance to be a semi topological 
semi group and given C a chance to be a nonempty 
subset of a Banach space E. At that point a family 

 of mappings of C into itself is called a 
non-expansive semi group on C if it satisfies the 
following: 

(i)  for all  and  

(ii) For each  the mapping  is 
continuous; 

(iii) For each  is a non-expansive mapping 
of C into itself. 

For a non-expansive semi group  011 
C, we denote by F(S) the set of common fixed points 

of  Let S be a semi topological semi group, let 
C(S) be the Banach space of all bounded continuous 

functions on S and let  be the space of all 
bounded right uniformly continuous functions on S, 

i.e., all  such that the mapping  is 

continuous. Then  is a closed sub algebra of 

containing constants and invariant under  and 

. 

In 1969, Takahashi (1969) demonstrated the main 
fixed point theorem for a noncommutative semi group 
of non-expansive mappings which generalizes 
DeMarr's fixed point theorem, that is, he demonstrated 
that any discrete left manageable semi group has a 
typical fixed point. Mitchell generalized Takahashi's 
result by demonstrating that any discrete left reversible 
semi group has a typical fixed point. Lau demonstrated 
the following theorem: 

Theorem 4.5 Let S be a semi topological semi group 

and let be the space of all  such that 

 is relatively compact in the norm topology 

of  Let  be a non-expansive 
semi group on a compact convex subset C of a 

Banach space E. Then has a left invariant mean if 
and only if  has a common fixed point in c. 

Lim generalized Kirk‘s result, Browder‘s result and 
Mitchell‘s result by showing the following theorem: 

Theorem 4.6 Let  be a left reversible semi 
topological semi group. Let C be a weakly compact 
convex subset of a Banach space E which has normal 

structure and let   be a non-expansive 
semi group on C. Then  has a common fixed point in 
C . 

Takahashi and Jeong also generalized Browder‘s 
result by using the concept of sub mean. 

Theorem 4.7 Let S be a semi topological semi group. 

Let  be a non-expansive semigroup 
on a bounded closed convex subset C of a uniformly 

convex Banach space E. Suppose that  has a 
left, sub invariant sub mean. Then  has a common 
fixed point in C. To prove Theorem 4.7, we need the 
following lemma: 

Lemma : Let  and   be two fixed numbers. 
Then a Banach space E is uniformly convex if and 
only if there exists a continuous, strictly increasing, 
and convex function (depending on p and b) 

 such that  and 

 
for all  and  where 

 and  is the closed ball 
with radius b and centered at the origin. 

We may comment on the relationship between 
 has an invariant mean‖ and “S is left 

reversible‖. As well known, they do not imply each 

other in general. But if  has sufficiently many 
functions to separate closed sets, then  has 

an invariant mean‖ would imply  is left and right 
reversible‖. Recently, Lau and Takahashi generalized 
Lim‘s result and Takahashi and Jeong‘s result. 

Theorem 4.8 Let be a semi topological semi group, 
let C be a nonempty weakly compact convex subset 
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of a Banach space E which has normal structure and 

let  be a non-expansive semi group on 

C. Suppose  has a left sub invariant sub mean. 

Then  has a common fixed point in C. 

To prove Theorem 4.9, we need two lemmas. 

Lemma :A closed convex subset C of a Banach space 
has normal structure if and only if it does not contain a 

sequence  such that for some  

 

for all  and  where  

Lemma : Let X be a compact convex subset of a 

separated topological vector space E, let  
be a finite family of lower semi continuous convex 
functions from X into R and let  where R 
denotes the set of real numbers. Then the following 
conditions (i) and (ii) are equivalent: 

(i) There exists  such that  for all 

 

(ii) For any finite non-negative real numbers 

 with  there exists 

 such that  

Theorem 4.8 answers certifiably a problem postured 
amid the Conference on Fixed Point Theory and 
Applications held at CIRM, Marseille-Luminy, 1989, 
regardless of whether Lim's result and Takahashi and 
Jeong's result can be completely reached out to such 
Banach spaces for amiable semi groups. We don't 
know whether "ordinary structure "in Theorem 4.8 
would be supplanted by "asymptotic typical structure". 

WEAK CONVERGENCE THEOREMS 

The main nonlinear ergodic theorem for non-expansive 
mappings was set up in 1975 by Baillon in the system 
of a Hilbert space. 

Theorem 4.9 Let C be a shut arched subset of a 
Hilbert space H and let T be a non-expansive mapping 

of C into itself. In the event that the set  of fixed 

points of T is nonempty, then for each  the 
Cesaro means 

 

converge weakly to some  

This theorem was stretched out to a consistently 
raised Banach space whose standard is Frechet 
differentiable by Bruck. 

Theorem 4.10 Let C be a shut curved subset of a 
consistently raised Banach space E with a Frechet 

differentiable standard. In the event that  
is a non-expansive mapping with a fixed point, then 

the Cesaro means of  converge weakly to a fixed 
point of T. 

In their theorems, putting for each  we 
have that P is a non-expansive retraction of C onto 

F(T) such that  for all  

and   for each  

where  is the closure of the convex hull of A. 

We talk about nonlinear ergodic theorems for a 
nonlinear semigroup of non-expansive mappings in a 
Hilbert space or a Banach space. Before talking 

about them, we give a definition. Let  be a 

net of means on  Then  is said to be 
asymptotically 

invariant if for each  and  

 and  

Let us give an example of asymptotically invariant 

nets. Let  and let N be the set of positive 

integers. Then for  and  
the real valued function  defined by 

 

is a mean. Further since for  and 

 

 

as  and  is commutative,  is an 
asymptotically invariant net of means. 

If C is a nonempty subset of a Hilbert space H and 

 is a non-expansive semi group on C 

such that  is bounded for some  
then we know that for each  and  the 

functions  and  are in 
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 Let  be a mean on  Then since for 
each  and  the real valued 

function is in  we can define the value 

 of  at this function. By linearity of  and of 
the inner product, this is linear in  moreover, since 

 

it is continuous in y. So, by the Riesz theorem, there 

exists an  such that  for every 

 We write such an  by . 

Presently we can express a nonlinear ergodic theorem 
for noncommutative semi groups of non-expansive 
mappings in a Hilbert space. 

Theorem 4.11 Let C be a nonempty subset of a Hilbert 
space H and let  be a semi topological semi group 

such that has an invariant mean. 
Let  be anon-expansive semi group on C 

such that is bounded and 

 for some  Then, 

 Further, for an asymptotically invariant 

net  of means on  the net 
 converges weakly to an element 

 

Utilizing Theorem 4.11, we have Theorem 4.9. By a 
similar method, we can demonstrate the following 
nonlinear ergodic theorems: 

Theorem 4.12 Let C be a shut curved subset of a 
Hilbert space H and let T be a one-parameter non-

expansive mapping of C into itself. If  is nonempty, 

then for each  

 as  converges weakly to 

an element  

Theorem 4.13 Let C be a closed convex subset of a 

Hilbert space H and let   be a 

non-expansive semi group on C. If  is nonempty, 
then for each  

 

as  converges weakly to an element  

Next, we express a nonlinear ergodic theorem for non-
expansive semigroups in a Banach space. Before 

expressing it, we give a definition. A net  of 

continuous linear functional on  is called 
strongly regular if it satisfies the following conditions: 

(i)  

(ii)  

(iii)  for every  

Theorem 4.14 Let  be a commutative semi 
topological semi group and let E be a uniformly convex 
Banach space with a Frechet differentiable norm. Let 
C be a nonempty closed convex subset of E and let 

 be a non-expansive semi group on C 

such that  is nonempty. Then there exists a unique 

non-expansive retraction P of C onto  such that 

 for every  and  for 

every  

Further, if  is a strongly regular net of continuous 

linear functional on  then for 

each converges weakly to  uniformly in 

 

We have not known whether Theorem 4.14 would 
hold in the case when  is noncommutative. As of 
late, Lau, Shioji and Takahashi tackled the problem 
as follows: 

Theorem 4.15 Let C be a shut raised subset of a 
consistently curved Banach space E, let S be a semi 

topological semi group which  has an invariant 

mean, and let  be a non-expansive 

semi group on C with Then there exists a 

non-expansive retraction P from C onto  such

 that  for each and 

 for each  

This is a generalization of Takahashi's result for an 
amiable semigroup of nonexpan¬sive mappings on a 
Hilbert space. Facilitate they stretched out Rode's 
result to an agreeable semigroup of non-expansive 
mappings on a consistently arched Banach space 
whose standard is Frechet differentiable. 

Theorem 4.16 Let E be a consistently raised Banach 

space with a Frechet differentiable standard and let  
be a semi topological semi group. Let C be a closed 

convex subset of E and let  be a non-

expansive semi group on C with  Suppose 

that  has an invariant mean. Then there exists 

a unique non-expansive retraction P from C onto  

such that  for each  and 

 for each  Further, if  is 
an asymptotically invariant net of means on X, then 

for each converges weakly to Px. 
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To demonstrate Theorem 4.16, they utilized Theorem 
4.15 and the following lemma which has been 
demonstrated in Lau, Nishiura and Takahashi. 

Lemma : Let E be a consistently raised Banach space 
with a Frechet differentiable standard and let  be a 
semi topological semi group. Let C be a closed convex 

subset of E and let  be a non-expansive 

semi group on C with  Then, for each 

 consists of at most one 
point. 

The following theorem has been demonstrated in 
Takahashi and Lau, Nishiura and Takahashi when E is 
a Hilbert space. 

Theorem 4.17 Let E be a consistently raised Banach 

space with a Frechet differentiable standard and let  
be a semi topological semi group. Ijet C be a closed 

convex subset of E and let  be a non-

expansive semi group on C with  Suppose 

that for each  is 
nonempty. Then there exists a non-expansive 
retraction P from C onto F(S) such 

that for each and 

for each  

On the other hand, Mann introduced an iteration 
procedure for approximating fixed points of a mapping 

T in a Hilbert space as follows:  and 

 where  is a 
sequence in . Afterward, Reich talked about this 
iteration technique in a consistently raised Banach 
space whose standard is Frechet differentiable and 
gotten the following theorem: 

Theorem 4.18 Let C be a shut convex subset of a 
consistently raised Banach space E with a Frechet 
differentiable standard,, let  be a non-

expansive mapping with a fixed point  and let  be a 

real sequence such that  and 

 If and 

for  

then converges weakly to a fixed point of T. 

This theorem has been known for those consistently 
arched Banach spaces that fulfill Opial's condition. Tan 
and Xu demonstrated the following intriguing result 
which generalizes the result of Reich. 

Theorem 4.19 Let C be a shut arched subset of a 
consistently curved Banach space E which fulfills 
Opial's condition or whose standard is Frechet 

differentiable and let  C be a non-expansive 

mapping with a fixed point. Then for any initial data  

in C, the iterates defined by 

 

where  and  are chosen so that 

  
 join weakly to a fixed point of T. 

To demonstrate Theorem 4.19, Tan and Xu utilized the 
following two lemmas. 

Lemma 4.20 Let C be a nonempty shut raised subset 
of a consistently arched Banach space E with a 

Frechet differentiable standard and let  
be a sequence of non-expansive mappings of C into C 

such that is nonempty. Let  and put 

for Then, the 

set consists of at most one 

point, where  

Lemma Let E be a uniformly convex Banach space, 

let  be a real sequence such 

that for  and 

let Suppose that  and  are sequences 

of E such that  

 and  

 Then  

Takahashi and Kim additionally demonstrated the 
following theorem: 

Theorem 4.21 Let E be a consistently arched Banach 
space E which fulfills OpiaVs condition or whose 
standard is Frechet differentiable, given C a chance 
to be a nonempty shut raised subset of E, and 
let be a non-expansive mapping with a fixed 

point. Suppose  and  is given by 

 for all 

 where and are chosen so that 

 and or  and  

for some a, b with Then converges 
weakly to a fixed point of T.  

Roused by Theorems 4.19 and 4.21, Suzuki and 
Takahashi got the following theorem: Theorem 4.22 
Let C be a nonempty shut raised subset of a 
consistently curved Banach space E which fulfills 
OpiaVs condition or whose standard is Frechet 
differentiable. Give T a chance to be a non-expansive 
mapping from C into itself with a fixed point. Assume 

that  is given by  and 

 

where  and  are sequences in  with 

 and 
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 and 

 Then converges weakly to a fixed 
point of T. 

To prove Theorem 4.22, Suzuki and Takahashi used 
the following two lemmas. Let I be an infinite subset of 
positive integers N. If  is a sequence of nonnegative 

numbers, then we denote by  the 
subsequence of  

Lemma Let and be sequences of nonnegative 

numbers such that  and  Then 
for   there exists an infinite subset I of N 

such that  and the subsequence 

 converges to 0. 

Lemma 4.23 Let  and  be sequences of non-

negative numbers such that for all  
 Suppose there exists a subsequence 

of such that  and 

 Then  

Compare Theorem 4.22 with Theorem 4.19 of Tan and 
Xu. This indicates that the 

assumption in Theorem 4.12 is 
superfluous. We do not know whether the 

assumptions and in 

Theorem 4.16 are replaced by  and 

 We also know the following strong 
convergence theorem which is connected with 
Rhoades, Tan and Xu, and Takahashi and Kim. 

Theorem 4.24 Let E be a strictly convex Banach 
space, let C be a nonempty closed convex subset of 
E, and let  be a non-expansive mapping which 
T{C) is contained in a compact subset of C. Suppose 

 and  is given by 

 for  

where  and  are chosen so that 

 and  or 

 and  Then  
converges strongly to a fixed point ofT. 

Let C be a closed convex subset of a Banach space E, 

and let T, be selfmaps on C. Then Das and Debata 
considered the following iteration scheme:  and 

 for  where 

 and  are real sequences in They 
demonstrated a strong converence theorem 
concerning Roades' result. Takahashi and Tamura got 
the following weak convergence theorem. 

Theorem 4.25 Let E be a consistently arched Banach 
space E which fulfills Opial's condition or whose 
standard is Frechet differentiable, given C a chance to 

be a nonempty shut curved subset of E, and let 

# be non-expansive mappings such 

that is nonempty. 

Suppose and is given by 

 for  

where  and are chosen so that  for 

some a, b with  

Then converges weakly to a common fixed point 

of and T. 

Further, Takahashi and Tamura obtained the following 
theorem: 

Theorem 4.26 Let C be a nonempty closed convex 
subset of a uniformly convex Banach space E, and 
let be non-expansive mappings such that 

 is nonempty. Let P be the metric projection 

of E onto.  and suppose  and  is 

given by  for  

where  and  are real sequences in  Then 

 converges strongly to a common fixed point of 
S and T. 

To apply convergence theorems of Mann's compose 
to the attainability problem, we have to stretch out 
Theorem 4.25 to a group of limited mappings. Give C 
a chance to be a nonempty curved subset of a 
Banach space E. 

Let  be finite mappings of C into itself and 

let  be real numbers such that  

for every  Then, we define a mapping W 
of C into itself as follows: 

 

Such a W is called the W-mapping generated by 

 and  

Theorem 4.27 Let E be a uniformly convex Banach 
space E which satisfies OpiaVs condition or whose 
norm is Frechet differentiable, let C be a nonempty 

closed convex subset of E, and let  be
 finite non-expansive mappings of C into 

itself such that  is nonempty. Let a, h be real 

numbers with  and suppose  and 

 is given by 
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where Wn are W-mappings generated by  

and  Then  converges 

weakly to a common fixed point of  

We will at last demonstrate a weak convergence 
theorem of Mann's compose for a non-expansive 
semigroup in a Banach space. 

Theorem 4.28 Let E be a consistently curved Banach 
space E with a Frechet differentiable standard. Give C 
a chance to be a nonempty shut curved subset of E 

and let  be a non-expansive semigroup 

on C such that  Let  be a sequence of 

means on  such that for every 

 Suppose,  and is given By 

 for every  

where  is a sequence in  If  is chosen so 

that   for some a with   then  

converges weakly to an element  

Utilizing Theorem 4.28, we can demonstrate a weak 
convergence theorem of Mann's compose for a one-
parameter non-expansive semigroup. 

Theorem 4.29 Let E be a consistently arched Banach 
space E with a Frechet differentiable standard and let 
C be a shut curved subset of E. Let 

 be a one- parameter non-

expansive semigroup on C such that  
Suppose  and  is given by 

 for every  Where 

 as  and  is a sequence in 

. If  is chosen so that for some a with 

, then  converges weakly to a common 

fixed point  

STRONG CONVERGENCE THEOREMS 

In this section, we examine strong convergence 
theorems for non-expansive mappings. Give C a 
chance to be a nonempty shut curved subset of a 
genuine Hilbert space H. In 1967, Browder got the 
following strong convergence theorem: For a given 

 and each  define a contraction 

by 

 for all  where T is a non-
expansive mapping of C into itself. Then, there exists a 

unique fixed point  of  in C such that 

 

Further if the set  of fixed points of T is nonempty, 

then  converges strongly as  to a fixed 
point of T. After Browder's result, such a problem has 
been researched by a few creators. Specifically, Reich 
and Takahashi and Ueda additionally stretched out 
Browder's result to strong convergence theorems for 
resolvents of accretive administrators in a Banach 
space. Before expressing them, we give two 
definitions. A shut raised subset C of a Banach space 
E is said to have the fixed point property for non-
expansive mappings if each non-expansive mapping 
of C into itself has a fixed point in each nonempty 
bounded shut arched subset of C with the end goal 
that T leaves invariant. Let A bean accretive 
administrator in a Banach space E. At that point An is 

said to fulfill the range condition if  for 
every  

Presently we can demonstrate the principal strong 
convergence theorem for resolvents of accretive 
administrators. 

Theorem 4.30 Let E be a reflexive Banach space with 
a consistently Gateaux differ¬entiable standard and 

let be an accretive operator that satisfies 
the range condition. 

Let C be a closed convex subset of E such that 

 and every weakly compact convex 
subset of C has the fixed point property for non-

expansive mappings. If , then for each x in C, 

 exists and belongs to  

As direct consequences of Theorem 4.30, we obtain 
the following two results. 

Theorem 4.31 Let E be a uniformly convex and 

uniformly smooth Banach space, and let  

be m-accretive. If  then for each 

 exists and belongs to  

Theorem 4.32 Let E be a reflexive Banach space with 
a uniformly Gateaux differentiable norm, let 

 be an accretive operator that satisfies 
the range condition. 

Suppose that every weakly compact convex subset of 
E has the fixed point ^property for non-expansive 

mappings. If  and  is convex, then for 

each  exists and belongs to 

 

We additionally know the following theorem: 

Theorem 4.33 Let C be a shut arched subset of a 
Banach space E and let T be a non-expansive 
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mapping of C into itself. At that point the following 
hold: 

(i) If  then A is accretive; 

(ii)  

Theorem 4.32 generalizes Browder‘s strong 
convergence theorem. In fact, from 

 

we have (* * *) Putting  
we have from Thorem 4.33 that A is accretive and 

satisfies the range condition. Since  from 

, we have, by Theorem 4.32, 

 Recently, Wittmann dealt 
with the following iterative process in a Hilbert space: 

 and.  for  

where  is a sequence. The following theorem was 
proved by Wittmann. 

Theorem 4.34 Let H be a Hilbert space. Let C be a 
nonempty closed convex subset of H. Let T be a non-

expansive mapping of C into itself such that  

Let  be a sequence of real numbers such that 

   and 

 Suppose that  is given by  

and  for  

Then,  converges strongly to , where P is 
the metric projection from C onto F(T). 

Shioji and Takahashi stretched out Wittmann's 
theorem to a Banach space by utilizing Theo¬rem 4.30 
as follows: 

Theorem 4.35 Let E be a consistently raised Banach 
space with a consistently Gateaux differentiable 
standard. Give C a chance to be a nonempty shut 
curved subset of E. Give T a chance to be a non-
expansive mapping of C into itself with the end goal 

that  Let   be a sequence of real numbers 

such that   

 and  Suppose that 

 is given by  and  

for  

Then,  converges strongly to  where P 
is aunique sunny non-expansive withdrawal from C 
onto F[T). 

Kamimura and Takahashi additionally got the following 
result by utilizing Theorem 4.30, which is associated 
with the proximal point calculation. 

Theorem 4.36 Let E be a consistently curved Banach 
space with a consistently Gateaux differentiable 
standard and let  be an m-accretive 

operator. Let  and let  be a sequence defined 

by  and  for 

 where  and  satisfy 

  and   If 

 then  converges strongly to an element 

 where P -is a unique sunny non-expansive 

retraction of E onto  

Atsushiba and Takahashi demonstrated a strong 
convergence theorem for limited non-expansive 
mappings which is associated with the achievability 
problem. 

Theorem 4.37 Let E be a consistently raised Banach 
space with a consistently Gateaux differ¬entiable 
standard. Give C a chance to be a nonempty shut 

arched subset of E, let  be real 

numbers such that  for every 

 and  for 

every  and let  be finite 
non-expansive mappings of C into itself such 

that Let be the W-

mappings of C into itself generated by  

and Let  be a sequence of real 

numbers such that  for every 

  and 

 Suppose that  

for every  and  is given by 

 and where  is a sequence in If 

 and  art chosen so that  

 and  then  converges 

strongly to the element of  which is nearest to  

in  
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