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Abstract – The present research contemplate mostly includes a survey of differing time-domain boundary 
element methods that can be utilized to numerically fathom the retarded potential integral equations. The 
point is to address the late-time stability, exactness, and computational unpredictability concerns in time-
domain surface integral equation approaches. The investigation by and large focuses on the transient 
electromagnetic scattering of three-dimensional flawless electrically conducting bodies. Effective 
algorithms are produced to numerically fathom the timedomain electric, derivative electric, magnetic, and 
combined field integral equation for the obscure incited surface current.  

Utilizing a Galerkin approach, the obscure thickness is supplanted by a piecewise polynomial 
approximation, the coefficients of which can be found by fathoming a straight system. The passages of 
the system grid of this straight system include, for the instance of a two dimensional scattering problem, 
integrals more than four dimensional space-time manifolds. A precise computation of these integrals is 
vital for the stability of this method. Utilizing piecewise polynomials of low request, the two fleeting 
integrals can be assessed logically, prompting part functions for the spatial integrals with entangled 
domains of piecewise bolster. These spatial piece functions are summed up into a class of allowable part 
functions. A quadrature scheme for the approximation of the two dimensional spatial integrals with 
acceptable part functions is displayed and demonstrated to converge exponentially by utilizing the 
hypothesis of countably normed spaces. From the earlier mistake gauges for the Galerkin approximation 
scheme are reviewed, upgraded and talked about. Specifically, the scattered wave's vitality is examined 
as an elective blunder measure. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

THE FOURIER AND LAPLACE TRANSFORMS 

In this section, we recall the definitions of the Fourier 
transform and of the Laplace transform (in the 
distributional sense). The spaces  and LT are 
already used in the definitions of the respective 
transforms, although they are only introduced in 
Definition below. 

For  and  the (one dimensional) Fourier 
transfoim with respect, to the time variables is given by 

  (1) 

Analogously, for  and  the (multi-
dimensional) Fourier tmnsform with respect to the 
space variables is given by 

 (2) 

We sometimes write u instead of  Partial Fourier 
transforms with respect to k spatial variables 

 with  for  are 
defined analogously in an obvious way. In the 
distributional sense. 

Finally, for  and for  the Fourier-
Laplace tmnsform with respect to the time variables is 
given by 

  (3) 

We sometimes write  instead of  

Remark 1 (On the Laplace and Fourier Transforms) 

a) The Laplace transform, is often defined as, for 

  

This definition coincides with (3) for  or, 
respectively, for  
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b)  We note that, for  

 

c) For  there holds 

 

We use the following obvious notation for combined 

space-time transforms, for example for   

  

or for  with  

 

We now return to some formal definitions. Above we 
have used the spaces  and LT without defining 
them. This is done in Definition 1. 

Definition 1 (Tempered and Laplace Transformable 
Functions and Distributions) 

a) Let  for  and
 any multi-index  Then 

 is called the space 
of tempered functions. It is also known as the 
space of rapidly decreasing/decaying (towards 
infinity) functions. Note that the definition  

 

is equivalent- 

b) The dual space of  (the space of all 

distributions on  denoted by  is 
called the space of tempered distributions or 
the space of slowly growing distributions. 

c)  We set , with  as in 
McLean, W. (2000),. 

d)  Let N = 1 .By  we denote the space of 
causal distributions, i.e. the space of 

distributions with support in  and by  
the space of causal tempered distributions. 
Using Remark 1 b), the use of the Laplace 
transform, makes sense for  with 

 for some  

In this case, i.e. if , is holomorphic for 

 with.  We thus have the set LT 
of Laplace transformable distributions given by 
Tr`eves, F. (1975), 

  

where, for any  

 

For any  we set  

Remark 2 (On Definition 1) 

There holds  and  

Similar definitions for domains  can be found in 
any textbook on functional analysis. Here we need to 
extend the definitions above to functions and 
distributions valued in Banach spaces, as in Tr`eves, 
F. (1975). 

Definition 2 (Generalisation of Definition 1 to Banach 
Spaces) Let E be a Banach space. 

a) Let  for  

and any multi-index Then S(E)  

{  valued in  for all 

} is called the space of tempered E-
valued functions. Again,  is an 
isomorphism. 

b) The dual space of S(E) (the space of all 
distributions on S(E)), denoted by  is 
called the space of tempered E-valued 
distributions or the space of E-valued 
distributions of slow growth. An equivalent 
definition can be found in Tr`eves, F. (1975),. 
Again,  can be identified with a 
subspace of  For causal distributions, 

i.e. those with support on  the 

respective spaces are again denoted by  
and  

c) The set LT(E) of Laplace transformable 
distributions with values in E is given by 

 

where, for any  

 

Again, for any  we set 

 

For reference, we state the well known Paley-Wiener 
Theorem and the Parseval-Plancherel identity. 
Lemma 1 allows to map results on existence and 
uniqueness obtained in the frequency domain to the 
space-time domain, and Lemma 4.2 can be used to 
deduce mapping properties of time dependent 
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operators from the mapping properties of time 
independent operators. 

Lemma 1 : 

Let the E-valued f unction  be 

holomorphic in the half-plane  for 
 Then the following conditions are equivalent: 

a) There exists a distribution  such that 

 

b) There exists some  some  and  

such that  for all  with 

 

Lemma 2 : 

Let E be a Hilbert space,  and 

 Then 

 

With  we obtain 

 

for the Fourier transform. 

As in A. Bamberger and T. Ha-Duong (1986),, we 
further define an operator  implicitly by 

  (4) 

for any  For s=k with  this is the k-th temporal 
derivative of f, whereas for s = -k with  this is the 
k-th temporal anti-derivative of f. 

ANALYSIS IN THE LAPLACE DOMAIN 

As we mentioned in the introduction to this section, we 
use the classical approach for the analysis of the time 
domain boundary layer potentials and the 
corresponding time domain boundary integral 
operators that was introduced by Bamberger and Ha-
Duong (1986). This means that we analyse the 
potentials and operators in the Laplace domain first, 
after mapping the original problem (P) to the Laplace 
domain by means of the Laplace transform.  

Reviews on this method have been published in the 
form of research papers, such as the ones by Ha-
Duong (2003) or Laliena and Sayas (2009) [103], or in 
the form of lecture notes, such as the ones by 
Becache (1994) or, mast recently, Sayas (2011). 

Let us recall how the transient problem (P) is related to 
the time harmonic Helmholtz problem first. Assume 
that u solves (P), and let u:= Ct[u]. Then u solves the 
exterior Helmholtz boundary value problem 

 

Equation 5a) is known as the homogeneous Helmholtz 
equation, while condition (5c) is called the Sommerfeld 
radiation condition.  

We note that there are at least two different versions of 
the Sommerfeld radiation condition by which (5c) could 
be replaced. For the definition of the boundary layer 
potentials and integral operators, we state the 
fundamental solutions of the Helmholtz equation in 
Lemma 3. 

Lemma 3 (Fundamental Solutions of the Helmholtz 
Equation) 

The fundamental solution of the Helmholtz equation 
(5a)  

 (6) 

 (7) 

 (8) 

with  where  denotes the Hankel function of 
order zero of the first, kind. 

The boundary potentials for the Helmholtz Problem 
(HH) are defined similarly to the time domain 
boundary layer potentials given in Definition 3. 

Definition 4 (Boundary Layer Potentials for the 
Helmholtz Problem) 

Let  For appropriate densities  the 
Helmholtz Single Layer potential is given by 

  (9) 

and the Helmholtz Double Layer potential by 

 (10) 
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As in Definition. we do not specify the regularity of p 

and here. We conduct an explicit analysis that takes 

the dependency on the wave number into account. 
We further refer to Costabel, M. (1988) for mapping 
properties of arbitrary elliptic boundary integral 
operators. 

The corresponding boundary integral operators 
 and  are defined analogously to Definition. 

Note that the Helmholtz boundary potentials and 
operators are the Laplace transforms of their transient 
counterparts, e.g.  

In the rest of this study, we restrict ourselves to the 
three dimensional case, even though we conduct our 
studies on a posteriori error estimates and our 
numerical experiments in two space dimensions. This 
distinction can be justified by the fact that the 
fundamental solution of the two dimensional Helmholtz 
equation is much more complicated than its three 
dimensional counterpart, and therefore dealing with it 
would lead to many additional technical difficulties. 
Other authors have followed these two different routes 
in theory and practice for the same reason. The new 
generalised mapping properties studied, however, also 
hold in two space dimensions. 

Note that we omit the hat while working in the Laplace 

domain and write u instead of if its correct meaning is 
clear and there is no danger of confusion. 

An Equivalent Norm in Sobolev Spaces- 

For some domain , the energy of u in  is given  

 (11) 

By the Parseval-Plancherel identity (Lemma 2), 

 (12) 

This relation motivates the definition of the following 
energy-related norms. 

Recall the definition of the usual  

 (13) 

Now, to guarantee  let  for some  
Then the norm  

 (14) 

is equivalent to the  We often refer 
to these norms as the wavenumber-dependent norms 
or  -dependent noims. 

The norms  and  are defined analogously 
by using an atlas. We write  and  when we 
deal with statements and results that hold for all 

 

Remark (Equivalence Estimates for the Classical and 
|u;|-Dependent Norms) 

Note that the equivalence of the norms Ls  -
dependent. We have, for  

 but only 

 

and hence, in summary, 

 (15) 

Correspondingly, for  

  (16) 

(15) and (16) can be summarised as 

 (17) 

for any  Norm equivalences of the type  

  (18) 

for  can be concluded from (17). 

Example (Norm Equivalences) 

a) For s= 1  

 

Similarly, for s = 2, 

 

b) Since, for  there 

holds  and 
therefore equivalence of these two norms. 

Due to the -dependence of the equivalence 
estimates illustrated in Remark, we cannot deduce, 

for instance, the trace theorem for the -dependent 
norms directly from the results for the standard norms 

without any dosses' regarding powers of  

The Trace Theorem for the -Dependent Norms -  

The proofs of the following results are all similar to 
the ones of the original results given in McLean, W. 
(2000). For the particular case s = 1, a result similar 
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to Lemma 4 below, based on the proof of for the 
standard norms. These are also collected in Lemma. 
We give outlines of the proofs here for completeness 
and to demonstrate the (minor) differences to the 
original proofs. The term ‗generalisation‘ Ls 
appropriate in the sense that we obtain the classical 

theorems  again for  

Lemma 4 :  

a) For  the trace operator  

given by  has a 
unique extension to a bounded linear operator 

 

where the continuity constant with respect to the -

dependent noim depends on but not on , 

i.e. there exists a -independent constant  
such that 

 (19) 

for  

b) Let  be  domain and  Then the 

trace operator  defined by  
has an extension to a linear bounded operator 

 where the continuity constant 

with respect to the -dependent norms 

 depends on s,  and  but 

not. on  in the sense of part a). 

Proof 

Part b) is a consequence of part a), using a technique 
called ‗flattening of the boundary‘ described in the 
proof of McLean, W. (2000), It is thus enough to show 
part a). 

We write  and  for  Since 

 

there holds, by the definition of the inverse Fourier 
transform, 

 

By the definition,  and thus 

 (20) 

By the Cauchy-Schwarz inequality for integrals, we 
obtain 

 (21) 

where 

 (22) 

via the substitution  that gives 

 dt and   By 
McLean, W. (2000),, there holds, for  

where the constant  is obviously -
independent. Combining (21) and (22), we obtain 

 (23) 

Taking the integral in (23) proves the 
claimed result via the definitions of the respective 
norms.  

Since a Lipschitz boundary is  the result above 

can only be applied for  in this case. 

In fact it can be extended to the range  as the 
following result shows. The proof is again similar to 
the original ones of McLean, W. (2000),. 

Lemma 5 : 

Let  be a Lipschitz domain and  Then the 
trace opemtor defined in Lemma 4 b) is bounded 

independently of  as an operator mapping  to 

 in the same way as in Lemma 4 b), i.e. with a 
continuity constant that depends only on s,  and  

The following result is an immediate consequence of 
Lemma 4.5 and the fact that the norms of a linear 
operator and of its dual operator are equal; see, for 
instance, McLean, W. (2000). 

Corollary 1: 

Let  be a Lipschitz domain and Then the 

adjoint operator  to the trace operator  defined in 
Lemma 4 b) is bounded independently of  as an 

operator mapping  to  in 
the same way as in Lemma 5. 

Proof (of Lemma 5) 

First we define an anisotropic Sobolev space  via 
the norm 

 

By the definitions of the norms, there holds 
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where, as in the proof of Lemma 4,  Writing 

 and  for  again, we define 

 

where Ls the Lipschitz-continuous function whose 

graph is . Then, by the definition, 

 (24) 

Analogously to the proof of McLean, W. (2000) 
theorem, there hold the inequalities 

   (25) 

and 

  (26) 

where  Ls -independent. Further, by the 
definition and (20), and by the Cauchy-Schwarz 
inequality for integrals, 

 

Using the same substitution as in the proof of Lemma 
4, we obtain 

  
where the constant  is obviously -independent
 . Thus 

  (27) 

 

Combining estimates (24), (27), (25) and (26), we 
obtain 

 

which proves the claim.  

The next result is about the inverse to  the so-called 
extension operator. As before, the proofs follow the 
respective ones given in McLean, W. (2000), closely. 

Lemma 6 : 

a) For each  there exists an -dependent 
bounded linear operator 

 

where the continuity constant with respect to the -

dependent norm  depends on s, but not on  in 

the sense of Lemma 7), i.e. there exists a -
independent constant  such that 

 (28) 

for   

b) Let  be  domain and  Then 

there exists a -dependent bounded 
linear operator 

 

which is a right inverse to  

The continuity constant with res-pect to the -

dependent norms depends on s,  and 

 but not on  in the sense of part a).  is 
sometimes called the extension operator to  

Proof 

Part b) is a consequence of part a); taking  and 
using the same technique as in the proof of Lemma 7 
b). It is thus enough to show part a). 

Take  such that  for  The operator  
is defined by, for  

 (29) 

where, in this case.  

Then 

 

and thus 

 

Substituting  we obtain, with 
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and hence  
Now 

 

Using the same substitution as in the proof of Lemma 
4, we obtain 

 

where the integral  is 

bounded independently of  for all  and thus 
finally 

 

This completes the proof.  

A Brief Remark on Interpolation - 

We close our observations on the -dependent norms 
with some brief remarks on interpolation. We use the 

notation  with   for interpolation spaces 
here, where X, Y are Banach spaces with  
Without providing any technical details, we first cite a 
result for future reference. 

Lemma 7 : 

For any  there holds  

We now return to our specific setup. It is well 

established that  for 

 and . In what follows, 
we need: 

Theorem 1 (Interpolation for Sobolev Spaces  

Let the linear operator A be bounded 

as  and as   with 

 for j = 0,1. Then 

  (30) 

for  and  i.e. 
 is also a bounded map for these 

numbers s,t. 

Theorem 1 is stated in McLean, W. (2000),in general, 
but it is cited here for the special case of Sobolev 
spaces. In what follows, it is shown that Theorem 4.1 

still holds without any additional -dependent factors 
in (30) if the wave number dependent norms are used. 
To do this, we follow the proofs in McLean, W. (2000),. 
Let 

 

for  and  It is shown in McLean, 

W. (2000),] that  

with  and  and. 

 

where  is a weighted L2 norm, 

 

Note that  
is the norm of the interpolation space 

 that corresponds 
to . 

Repeating the proof of McLean, W. (2000),line by line, 
we find that, for  

 

there holds 

 

with  and  

We can thus use the interpolation result Theorem in 

the usual way for the -dependent norms, without 

any additional factors of  appearing in the 
interpolation estimates. 

MAPPING PROPERTIES OF THE BOUNDARY 
POTENTIALS AND BOUNDARY INTEGRAL 
OPERATORS FOR THE HELMHOLTZ 
PROBLEM 

In this section, we deal with the mapping properties of 
the boundary layer potentials given in Definition. and 
of the corresponding boundary integral operators for 
the Helmholtz problem. The bounds are explicit with 
respect to the wave number cj, which is going to 
prove to be important in the next section, where we 
consider the mapping properties of the time domain 



 

 

Seema Rani1* Dr. Ashwani Kumar2 

w
w

w
.i
g

n
it

e
d

.i
n

 

485 
 

 Functional Analysis of Time Domain Boundary Element Methods: A Review 

boundary layer potentials and the corresponding time 
domain boundary integral operators. 

We first collect estimates with respect to the natural (or 
energy) norms that have been proven in the literature. 

By natural norms, we mean the spaces  
and  equipped with either the classical norms or 

with the -dependent norms introduced. We then use 
Costabels technique to generalise these results to a 
wider range of Sobolev spaces. The mapping 
properties themselves are well known; the new 

contribution is the explicitness in  

A Review on Estimates with respect to the Natural 
Norms- 

We state the mapping properties in the classical 

Sobolev norms and in the equivalent  dependent 
norms. The differences we observe are merely a result 
of the differences in part b) and c) of the following 
lemma. In the estimates,  is the argument of the 
Laplace transform. The differences in the estimates 
with respect to this variable are crucial, as their powers 
correspond to the orders of the time derivatives in the 
space-time estimates via the Parseval-Plancherel 
identity. 

Lemma 8 (Trace Theorem; Trace Extension 
Lemma) 

Let  be a Lipschitz domain. Then the following 
results hold. 

a) Trace Theorem 

(i) For  with  

 

(ii) For  with  

 

b) Trace Extension Lemma 

(i) For  them exists an extension  
into  for which. 

 

with.  

(i) For  there exists an extension  

into  for which  with. 

 

c) Bound for the normal derivative 

(i) Let u solve the homogeneous Helmholtz 

equation (4.5a). Then, with.  

 

A similar result is given in Melenk, J. M. (2010), but 

there the factor on the right hand side is   instead of 

 

(i) Let u solve the homogeneous Helmholtz 
equation (5a). Then, with   

 

Remark : 

a) These estimates am optimal with mspect to 

 

b) Note that estimates b) (ii) and c) (ii) yield 
estimates b) (i) and c) (i) in Lemma 4.8, 
mspec- tively, via Remark. 

The following two lemmas are consequences of 
Lemma 8. 

Lemma 9 (Mapping Properties, Classical Norms, 
Helmholtz Problem) 

Let  be a Lipschitz domain. Let  and 
. Then  

 (31) 

 (32) 

 (33) 

 (34) 

 (35) 

 (36) 

with  

The Single Layer operator  is further bounded 

independently of  when it is considered as an 

operator mapping from  to  in three space 

dimensions: For  there holds 

 (37) 

with  

In two space dimensions, one can replace the bound 

 in (37) by  with  again. 
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Note that.  and therefore (37) also holds in 

two space dimensions, with  

Lemma 10 (Mapping Properties, -Dependent 
Norms, Helmholtz Problem) 

Let  be a Lipschitz domain. Let  and 

 Then  

 (38) 

 (39) 

 (40) 

 (41) 

 (42) 

 (43) 

with  

We define bilinear forms  and  by 

  (44) 

for  and 

 (45) 

for  Then there hold the coercivity estimates 
stated in Lemma 11. 

Lemma 11 (Coercivity Estimates, Helmholtz Problem 
Bilinear Forms) 

a) Let  Then, with  

(i)  

(ii)  

b) Let  Then, with  

(i)   

(ii)   

The continuity estimates stated in Corollary are an 
immediate consequence of Lemmas 9 and 10. 

Corollary (Continuity Estimates, Helmholtz Problem 
Bilinear Forms) 

a) Let  Then, with  

(i)  

(ii)  

b) Let  Then, with  

(i)  

(ii)  

We note that we gain one power of  in the 
coercivity estimates for  but none for the 
continuity estimate when  -dependent Sobolev 
spaces are used instead of classical Sobolev spaces. 

Regarding  it is the other way round. 

In both cases, the presence of powers of  in the 
continuity estimates and their absence in the 
coercivity estimates means that we have coercivity 
and continuity on two different spaces in the space-
time framework. In the frequency domain though, is 
just another constant, and one can apply the Lax-
Milgram Theorem as usual in this context. 

The inverse operator to  Ls denoted by  in A. 
Bamberger and T. Ha-Duong (1986). As mentioned in 

the proof of, there hold  and  
and hence we simply write  instead of  here, in 
particular to avoid confusion with the Newton 
potential, which is defined below. Some properties of 

 are collected in Lemma 12. 

Lemma 12 (Boundedness and Coercivity of ) 

Let  Then  

 (46) 

 (47) 

 (48) 

 (49) 

with  
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Equations (47) and (49) are proven below. A bound 

similar to (46) on  can be found. 

Proof (of equations (47) and (49) in Lemma 12) (49) 
follows just as in the proof, by using Lemma 8 a) (ii) 
instead of (i). 

To prove (47), we modify the proof, which is Lemma 8 
c) (i), we take (ii). The term  can be estimated. 

Hence we obtain  and thus (47).
  

With regard to the inhomogeneous Helmholtz equation 
the Newton potential (or volume potential) is given  

  (50) 

for  Correspondingly, the Newton potential for 
the wave equation is  

 (51) 

for  To simplify the notation, and in 

contrast to (P) and (HH),  denotes a bounded 

domain here. In the context of (P) and (HH), would 

be the scatterer, which is denoted by there. 

Melenk and Sauter show that 

 for  with 

 respectively  As an immediate 
consequence we obtain a bound on  

Lemma 13 (Boundedness of ) 

Let  Then 

  (52) 

with  

Generalised Mapping Properties - 

Up to now we have only presented results on the 
boundedness of the Helmholtz boundary layer 
potentials and boundary integral operators with 
respect to their respective natural energy spaces 

 and  However, generalised 
mapping properties are of interest as well, in particular 
in the context of a posteriori error estimation. The 
groundbreaking work on the boundary integral 
operators for a class of elliptic problems that includes 
the Laplace,  Helmholtz and Lame problem was done. 
He subsequently extended his analysis to the 
boundary integral operators for the heat equation.  

It is well known that the Helmholtz boundary integral 
operators have the same mapping properties as their 

Laplace counterparts. What is unknown though is how 
the respective estimates depend on the wave 

number when the spaces are not the respective 
natural energy spaces. Here we mimic Costabel‘s 
arguments in order to obtain bounds which are explicit 

in  We begin with a generalisation of Lemma 13. 

CONCLUSION 

This proposition fundamentally makes two 
contributions to the field of time domain Boundary 
Element Methods. On the hypothetical side, it gives 
summed up mapping results to the administrators 
included and acquaints a posteriori mistake gauges 
with this field. On the implementational side, it gives a 
full integration scheme that can be utilized with non-
uniform networks and presents an adaptable self-
adaptive algorithm that permits refinements in both 
the spatial and worldly direction. 
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