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Abstract – We embrace a novel topological approach for graphs, in which edges are demonstrated as 
points instead of circular segments. The model of "classical" topologized graphs makes an interpretation 
of graph isomorphism into topological homeomorphism, with the goal that every combinatorial idea are 
expressible in simply topological dialect. This enables us to extrapolate ideas from finite graphs to infinite 
graphs furnished with a perfect topology, which, dropping the "classical" necessity, require not be 
remarkable. We convey standard ideas from general topology to tons of a combinatorial motivation, in an 
infinite setting.  

We indicate how (perhaps finite) graph-theoretic paths are, with no specialized subterfuges, a subclass of 
a general classification of topological spaces, to be specific "paths", that incorporates Hausdorff bends, 
the genuine line and all associated orderable spaces (of discretionary cardinality).  
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INTRODUCTION 

A graph is only a combinatorial structure over a finite 
set communicating a binary connection, so graph 
theory is normally viewed as one of branches in 
combinatorics or discrete mathematics. Be that as it 
may, individuals dependably draw a photo comprising 
of \points" and \lines" on paper to display a graph. 
Albeit such a photo isn't fundamental to talk about a 
unique structure of a graph, it fortifies the instinct of 
geometors and lead them to attemption of setting up a 
sort of geometry managing pictures or states of 
graphs. Topological graph theory is one of the results 
of such attemption. One of fundamental subjects in 
topological graph theory is \embeddings of graphs on 
surfaces".  

Any nonplanar graph can't be drawn on the plane or 
the circle so any two edges don't cross each other, so 
we require another phase to put graphs without edge 
intersections. The torus, the projective plane, the Klein 
container et cetera are such stages and topological 
graph scholars are occupied with what occurs with 
those graphs set on them.  

Graphs can be spoken to in various routes: by 
arrangements of edges, by incidence relations, by 
adjacency matrices, and by other comparable 
structures. These portrayals are appropriate to 
computer algorithms. Truly, be that as it may, graphs 

are geometric items. The vertices are points in space 
and the edges are line fragments joining select pairs 
of these points. For instance, the points might be the 
vertices and edges of a polyhedron. Or then again 
they might be the convergences and movement 
courses of a guide. All the more as of late, they can 
speak to computer processors and correspondence 
channels. These photos of graphs are outwardly 
engaging and can pass on basic data effortlessly. 
They reflect graph theory's youth in "the ghettos of 
topology."  

The study will introduce an open problem in 
topological graph theory. It will begin with a definition 
of combinatorial curvature, properties of combinatorial 
curvature, and some motivation for interest in graphs 
of positive combinatorial curvature. We will then 
consider infinite families of graphs of positive 
combinatorial curvature. Next, we present the open 
problem regarding combinatorial curvature which 
asks: What is the largest connected graph of 
minimum degree 3 which has everywhere positive 
combinatorial curvature but is not in one of the infinite 
families? The following sections will present progress 
on this problem by first showing proofs of the upper 
bound and then constructions of large graplis that 
serve as the lower bound. Finally, I will explore 
different graph operations that maintain everywhere 
positive combinatorial curvature and the potential for 
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these operations to help in the construction of a larger 
lower bound graph. 

REVIEW OF LITERATURE: 

Topological graph theory manages approaches to 
speak to the geometric realization of graphs, regularly; 
this includes beginning with a graph and delineating it 
on different kinds of planning phases: 3-space, the 
plane, surfaces, books, and so on. The field utilizes 
topology to think about graphs. For instance, planar 
graphs have numerous extraordinary properties. The 
field likewise utilizes graphs to contemplate topology. 
For instance, the graph theoretic verifications of the 
Jordan Curve Theorem, or the theory of voltage 
graphs delineating fanned covers of surfaces, provide 
a naturally engaging and effortlessly checked 
combinatorial elucidation of unpretentious topological 
ideas. 

DEFINITIONS AND MOTIVATIONS 

Just as the Euler characteristic was a combinatorial 
invariant of a graph, we can define a combinatorial 
invariant of a vertex in a graph. 

1. Definition: Let G be a graph and We 
define the combinatorial curvature of v as 

 

where the sum is taken over all faces / incident with  

To gain a better understanding of combinatorial 
curvature, consider the following example. 

2. Example: Let G be the graph in Figure 4.1. 
Recalling that the outside of the graph is a 
face, we can calculate the combinatorial 
curvature for each of the labeled vertices: 

 

Note that and border the outside face and 
therefore have a 1/10 term in their calculation. We can 

also note that for vertices such as with degree at 
most 2, the combinatorial curvature will always be 

positive. For example, if for a vertex then 

 

 

Figure 1: A graph with vertices of positive, 
negative, and zero combinatorial curvature. 

In Example 2, one vertex had postitive curvature, 
another had negative curvature, and a third had zero 
curvature. We can give condition for zero, positive, 
and negative combinatorial curvature. Let G be a 
graph with minimum degree 2. Consider each face of 
size n of G as a regular n-gon with side length 1. 

Let Note that the angle of a regular n-gon 

is (see Figure 4.2) and is incident 

to faces so the sum of angles incident to is 

 

Then for all  

1. if and only if the sum of the angles 

incident to is  

2. if and only if the sum of angles 

incident to is less than and 

3. if and only if the sum of angles 

incident to is greater than  

In the previous section on topological graph theory, 
we defined that for a graph G with 

 

Figure 2: An n-gon has interior angle  

a two-cell embedding on a surface S, the Euler 
characteristic of S is 
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The following theorem follows easily from the definition 
of combinatorial curvat ure and this definition of the 
Euler characteristic of a surface. 

3. Theorem : Let G be a graph, with a two-cell 
embedding on a surface S. Then 

 

Pwof. Note that 

 

Now the sum of the degrees of all vertices in G counts 
the edges twice, so 

  

Additionally, a face f is incident to vertices. 

Therefore, for each face  appears times in 

the sum , so 

 

Putting these pieces together, we have 

 

as desired. 

GRAPHS OF POSITIVE COMBINATORIAL 
CURVATURE 

While our discussion up to this point has been 011 
combinatorial curvatures, for the remainder of this 
thesis we will focus on graphs with positive 
combinatorial curvature at every vertex. A graph G 

with for all is said to have everywhere 
positive combinatorial curvature. 

The condition of positive combinatorial curvature at a 
vertex is interesting for a few reasons. First, we will 
note that combinatorial curvature is bounded above for 
simple graphs. In a simple graph, the size of a face 

is for all faces f. Then for a vertex u of degree 1, 

 

where f is the face incident to For a vertex v of 

degree 2,  

and for a vertex of degree 3, 

 

For vertices of higher degree, we can see that adding 
a vertex changes the combinatorial curvature 

by  and since  this is always 
negative. Thus combinatorial curvature at a vertex is 
bounded above by 5/6 and in particular, bounded 
above by 1/2 for vertices of degree at least 3. On the 
other hand, positive combinatorial curvature is only 

bounded below by zero as a vertex  adjacent to 
faces of size 3, 3, and k will have combinatorial 
curvature 

 

In 2001, Higuchi showed that negative combinatorial 
curvature is bounded above by —1/1806. We can 
also see that negative combinatorial curvature is not 
bounded below, as we can make a vertex incident to 
sufficiently many faces of large size to guarantee an 
arbitrarily large negative combinatorial curvature. 

Suppose G is a graph with everywhere positive 
combinatorial curvature and a two cell embedding on 

a surface S. Since G must embed 
in a surface with positive Euler characteristic. We 
showed in the previous section on topological graph 
theory that the only two compact surfaces with 
positive Euler characteristic are the sphere and the 
projective plane. 

 There are four important infinite families of 
everywhere positive combinatorial curvature that 
embed on either the sphere or the projective plane: 
the prism graph, the ant prism graph, and the 
projective planar analogs. 

1. Definition: Define the prism graph as 
follows: 

 

where and . 

Then can be imagined as the skeleton of an n-

sided prism. Figure 4.3a is an octagonal prism,  

For any vertex ,  
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Generally, for the prism graph on 2n vertices, for 

all  

 

Thus, prisms are an infinite family of grahs with 
everywhere positive combinatorial curvature. 

2. Definition: Define the ant prism graph as 
follows: 

 

 

where and . 

An n-sided antiprism is a polyhedron composed of two 
parallel copies of an n-sided polygon, connected by a 

band of alternating triangles. Then can be 
imagined as the skeleton of an n-sided antiprism. 

Figure 4.3b is an octagonal antiprism, For any 

vertex   

 

As with the prism graphs, we find that for the 

antiprism in 2n vertices, for all  

Thus antiprisms are another infinite family of 
graphs with everywhere positive combinatorial 
curvature. 

3. Definition: Define the projective wheel 

graph as follows: 

 

For  

 

and for  

 

where . 

 

Figure 3: Prism and antiprism graphs 

We can view a projective wheel graph on 2k vertices 
as shown in Figure 4.4a. Where the two edges with 
arrows are the same edge. We will note that each 
vertex v in this graph has 

 

This is similar to the prism graph that can be 
embedded in the sphere. 

We can view the projective wheel graph on 2k + 1 
vertices as shown in Figure 4.4b. Again the two 
edges with the arrows are the same edge and every 
vertex in this graph has 

 

This is similar to the antiprism graph which can be 
embedded in the plane. Interestingly, the projective 
planar analogue of a prism must have an even 
number of vertices and the projective planar 
analogue of an antiprism must have an odd number 
of vertices. 

CONCLUSION: 

In this study, we considered this problem within the 
context of topological graph theory and graph 
embeddings. We attempted to contribute to the 
problem by considering what operations can be 
applied to PCC graphs that maintain the everywhere 
positive combinaotorial curvature but increase the 
number of vertices in the graph. Such operations may 
be very helpful in the construction of large PCC 
graphs, as they allow us make larger PCC graphs 
from known graphs. The open problem regarding the 
largest connected Positive Combinatorial Curvature 
(PCC) graph remains unanswered, and the bounds 
on the largest PCC graph are still relatively wide. The 
largest known PCC graph has 208 vertices but the 
smallest upper bound on the number of vertices is 
580. This leaves a lot of space to either lower the 
upper bound or construct large PCC graphs.  
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