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Abstract – Within the framework of a classical model, an ionic crystal is regarded as composed of 
independently polarizable ions. The dielectric polarization in ionic solids is of two types (i) electronic and 
(ii) ionic. The polarization arising from the displacement of electron clouds of ions with respect to their 
nuclei is known as electronic polarization. In addition to this, the displacements of ions from their 
equilibrium configurations give rise to ionic Polarizability. Both these polarizations contribute to the 
dielectric constant at low frequencies i.e. in the infrared region. At high frequencies corresponding to the 
optical region the contribution of ionic displacement polarization becomes almost negligible due to large 
inertia of ions. The dielectric constant at such frequencies is known as electronic or optical dielectric 
constant ε∞ and arises entirely due to electronic polarization .The dielectric constant at low frequencies 
is known as static dielectric constant εo .It is one of the remarkable feature of ionic crystals that ε0 for 
these crystals differs appreciably from ε∞, values of εo is significantly larger than ε∞ .The relationship 
between ε∞ and electronic polarization is known as Lorentz-Lorenz (LL) relation. The relationship 
between static dielectric constant εoand corresponding Polarizabilities is known as the Claussius – 
Mossotti (CM) relation. The LL and CM relations along with the equation of motion for ions lead to the 
Szigeti relation [129]. The dielectric constants have also been related to the optical mode frequencies, 
viz. short-range Interionic forces [122-127]. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

THE CLAUSSIUS-MOSSOTTI AND THE 
LORENTZ-LORENZ RELATIONS 

To establish the relationship between the dielectric 
constant and polarizability, it is necessary to know 
the electric field effective in polarizing an atom or ion 
in a dielectric substance. It is a problem of central 
importance to find correctly the field, which acts on 
and polarizes an atom. This field is called Lorentz 
field. The effective field on an ionic site in cubic ionic 
crystals can be expressed as, 

 

Where E is macroscopic electric field is applied 

externally dielectric polarization and 4/3 is the 
Lorentz factor. The validity of above equation in 
solids has been discussed by several investigators 
[2-5,8]. Dielectric constant is connected with the 
polarization and field through the expression, 

 

This displacement vector D and the electric field E 
are related through optical dielectric constant ε∞ as, 

 

So that, 

 

The dielectric polarization P is related to the 
Polarizability as, 

 

Where Pm ,Vm and  αm are the dipole moment, 
volume and polarizability of one molecule 
respectively. From the above equations it follows 
that, 

 

In case of simple and ideally ionic crystal one can 
write 
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So that, 

 

In low frequency region the infraredpolarizability 
become significant in case of ionic crystals and thus 
equation (2.8) can be expressed as, 

 

Where ε0 is the low frequency dielectric constant and 

I is the infrared polarizability, 

 

Where A, the force constant between nearest 
neighbours Which can be shown to be related to the 

compressibility  and Interionic separation Ro as 
follows, 

 

The form of equation (2.11) correspond to the ‗ NaCl‘ 
structure. 

SZIGETI RELATIONS 

In ionic crystals there are two types of ions, positive 
ions and negative ions. The static ionic displacement 
is determine by the force constant ‗A‘ as, 

 

Where u is the displacement of negative ions 
carrying a charge ‗Ze‘ relative to a relative to a 
positive ion in the long wavelength limit.The ionic 
Polarizability is given by 

 

Where N is the number of ion pairs per unit volume  
and hence is equal to 1/V. 

The CM and LL can be rearranged in the following 
form 

 

 

 

and 

 

Where 

 

and 

 

The transverse optic phonon frequency in the limit of 
long wavelength is determined by the equation of 
motion 

 

Where  is the reduced mass per ion pair .The 
total Polarization P is now given by 

 

If u = uoexp(-iTot),then we have, 

 

Now if we eliminate  between equations with help 
of equations (2.14),(2.15 and (2.20),we get the 
following relations, 

 

and 

 

Equation (2.21) and (2.22) are known as the first 
and second Szigeti relations respectively [ 1]. The 

first Szigeti relation connects the compressibility  
with other observed quantities whereas the 
second Szigeti relation connects the dielectric 
constants and transverse optic mode frequency of 
optical vibration. These two relations have been 
widely used to discuss the theories of dielectric 
constant and compressibility of binary crystals. In 
fact the Szigeti relations are not satisfied with 
experimentally observed quantities and therefore, 
the concept of effective compressibility and 
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effective ionic charge have been introduced. The 
introduction of such concept yields the following 
relations, 

 

and 

 

Values of Szigeti effective charge parameter (e
*
/e) 

calculated from equation (2.24) are found to be 
substantially lower than its normal value 1. These 
range between 0.7 and 0.8 for most of the alkali 
aldihides studied by Lowndes and Martin [105]. The 

values of (e/e) are much lower for less ionic crystals 

[115]. The deviations of (e/e) as well as  from their 

normal values indicate the failure of (e/e) of classical 
theory of dielectric behaviour of crystals. The basic 
assumptions on which the Szigeti relations are based 
are as follows, 

(i) The effective field is given by Eeff =E+ 4P/3. 

(ii) The ions are not distorted. They are 
considered to be spherical and polarizable. 

(iii) The short range interactions are considered 
to be operative only between nearest neighbour and 
three body interactions are neglected. 

It has been shown that second neighbour and three 
body interactions play important role in modifying the 
first Szigeti relation given by equation (2.24) for the 
effective charge parameter is concerned with ionic 
distortions. The distortion dipole moment arising from 
the deformation of ions is mainly responsible for 
deviating ionic charges. 

MOTT LITTLETON POLARIZATION MODEL 

The Claussius –Mossotti between dielectric constant 
and Polarizability is based on the assumption that 
effective polarization field at ion sites is given by 
equation (2.1).It has been demonstrated that 
equation(2.1) does not remain valid when ions 
overlap appreciably with each other .As it well known 
that ions  overlap, the validity of equation (2.1) is 
doubtful. The effect of over all of ions has been 
considered phenomenological by Mott and Gurney 
[3] and according to them one should divide the total 
polarization ‗P‘ in to three parts, 

 

Where P1and P2 represent the electronic polarization 
of cations and anions, respectably.Px is the 
polarization due to relative displacement of ions. The 
fields due to relative displacement of ions. The fields 
effective in polarizing the cations, anions and 
displacing the ions from their original positions are, 
respectably given by the following equations, 

 

 

 

where is a parameter representing the extent of 

overlap between ions. =1 correspond to no 
overlap ions and leads to normal CM relation. If we 

define the Polarizabilities1, 2,3 and x 
corresponding to P1,P2, and Px, then, 

 

The static or low frequency dielectric constant 0 in 
ionic crystal is defined as, 

 

After solving equations (2.29),(2.30)and(2.31)we 
obtained the following expressions, 

 

Where 

 

 

 

The following expression for dielectric constants 

are obtained corresponding to =0 
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and 

 

or, 

 

For =1,we get the following expression for o and  
(Lorentz- Lorenz and CM relations), 

 

 

Equation (2.37) and (2.39) were first derived by Mott 

and Littleton [111] taking  =0. An attempt has been 
made by Shanker and Sundraj [158] to obtain the 

dielectric constants for intermediate values of  
between o and 1. 

The effect of introducing  in the effective polarization 
fields has also been investigated on the transverse 

optic mode frequency To. Mott and Gurney have 
derived the following expression [111]. 

 

Where V and  are the volume and reduced mass 
per ion pairs respectively. Ze is magnitude of ionic 

charge. Putting  =1,in the equation (2.42) yield, 

 

Which is the Szigeti relation .For  =0, the equation 
(2.42) reduces to, 

 

This equation was first derived by Born [77-79] and 
subsequently used by Lucovsky et al[116] to discuss 
the nature of localized and non-localized effective 
charges. 

LOCALIZED EFFECTIVE CHARGE MODEL 

The concept of localized charge parameter was 
introduced by Burstein [81], which has been widely 
used to discuss the nature of chemical bond and 
dielectric properties of alkali halide crystals [2,6-15]. 
In these crystals the oscillator strength of the 
transverse optic mode phonons is reflected in the 
difference in the squares of the longitudinal optic 
(LO) and transverse optic phonon frequencies, or in 
terms of difference between low frequency dielectric 

constant o and high frequency dielectric constant . 
In fact the optic mode frequencies are related to the 
dielectric constants by Lyddane-sachs-Teller (LST) 
relationship, 

 

The oscillator strength of the transverse oscillator 
(TO) phonon is commonly described by either of 
two effective charge parameters e

*
T the 

macroscopic or transverse, or e
*
S the Szigeti 

effective charge. Of these charges, e
*
T is 

independent of the model and is calculated from 
readily observable quantities. On the other hand 
e

*
S is model dependent, in particular, requiring 

assumptions on the form of effective field. In fact 
e

*
T is a measure of the linear electric moment per 

unit cell and includes contributions from charge 
localized near the ion sites as well as charge 
distributed throughout the unit cell. Thus we can 
write, 

 

Wheree
*
nl is the non-localized charge. The 

effective localized charge e
*
l is assigned to be on 

the ion sites. The magnitudes of e
*
l is derived from 

the dipole interaction frequency. 

To develop a phenomenological model for 
calculating the localized effective charge 
parameter, it is considered that there are two 
contributions to the transverse optic mode 

frequency To. One of these is a mechanical or 
spring constant frequency derived from dipole-
dipole interaction. The one can write, 

 

Where o is the mechanical frequency and DD is 
the dipole interaction frequency. The localized 
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effective charge parameter e
*
l is derived from the 

relation, 

 

The factor (1/3) on the right of equation (2.48) 
reflects the cubic symmetry. In deriving equation 
(2.48), it has been assumed that there is no field 
correction. Although this assumption may be nearly 
true for covalently coordinated structures, but for 
highly ionic solids it is necessary to take full account 
of local field correction[10,11].When the local field 
correction is taken in to account, equation (2.48) is 
modified as, 

 

The effect of screening of the macroscopic field by 
the inter band electronic transition can be considered 
rigorously by writing 

 

Equation (2.50) considers, the screening as well as 
local field correction (2.48 to 2.50) that calculation of 

e
*
l requires the evaluation of 

2
DDor

2
o. For 

calculating the mechanical frequency o one has to 
adopt interionic potential model, which leads to an 

expression for o in terms of elastic constants. 

If one assumes that there are only central nearest 
short range forces acting on the effective ion cores, 
then it may be shown that, 

 

Where B
*
 is the reduced bulk modulus, 

 

If one considered the three body interaction within 
the framework of the model developed by Lundqvist 
[12]then the following expression is obtained, 

 

This equation (2.54) takes into account the 
deviations arising from the failure of the Cauchy 
relation C14 =C44.It has been suggested for Zinc-

blend type crystals, the non-central forces as done 
by Keating [32] and Martin [105], one finds 

 

Where 
* 

is a reduced bond bendingforce constant. 
By considering that dipole interaction contributions to 
the   Cij are described by el

*2
 Lucovsky et al [40] have 

obtained, 

 

For Zinc-bend type solids el
*2

 can be calculated with 
the help of equations (2.47),(2.48),(2.55) and 
(2.56). 
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