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Abstract – This essay is meant to be an exposition of the theory of Leavitt path algebras and graph C*-
algebras, with an aim to discuss some current classification questions. These two classes of algebras sit 
on opposite sides of a mirror, each reacting aspects of the other. The majority of these notes is taken to 
describe the basic properties of Leavitt path algebras and graph C*-algebras, the main theme being the 
translation of graph-theoretic properties into exclusively (C*-)algebraic properties. 

A pair of well-known results in the classification of C*-algebras, due to Elliott and Kirchberg {Phillips, state 
that the classes of approximately ønite-dimensional (af) C*- algebras and purely infinite simple C*-algebras 
can be classified, up to isomorphism or Morita equivalence, by a pair of functors K0;K1 from the category 
of C*-algebras to category of abelian groups. Since simple graph C*-algebras must either be AF or purely 
infinite, combining the Elliott and Kirchberg {Phillips theorems yields a full classification of simple graph 
C*-algebras 

Keywords:- C*-algebras, Elliott and Kirchberg–Phillips, Leavitt And Cuntz Algebras, isomorphism. 
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INTRODUCTION 

To a row-finite directed graph E we associate two 
algebras: the graph C*-algebra Cfi(E), and the Leavitt 
path algebra Lk(E) when k is a field. These are defined 
using nearly identical generators and relations, and 
LC(E) turns out to be to a dense subalgebra of Cfi(E). 
Defining an algebra by generators and relations is 
quite easy | take a quotient of a free algebra | but it is 
more difficult to construct universal C*-algebras. Thus 
the construction of Cfi(E) is specialized. Our first goal 
is to define Cfi(E) and establish some basic properties, 
and then we use that construction to motivate the 
definition of Lk(E). 

Motivation: Leavitt and Cuntz algebras 

In [18], Leavitt introduced rings L = Ln, deøned by 
generators and relations, with the mal function that L ' 
Ln as right L-modules but L;L2; : : : ;Ln�1 are pairwise 
nonisomorphic. Independently, Cuntz [10] studied the 
C*-algebras On generated by isometries satisfying 
similar relations as in Leavitt's algebras Ln. Nowadays 
it is wellknown that Ln is naturally a dense subalgebra 
of On. In this section we highlight Leavitt's reasons for 
inventing Ln, and how Ln øts into the more general 
class of Leavitt path algebras. 

Invariant basis number and module type 

A unital ring R has invariant basis number (or ibn) if, 
whenever Rm ' Rn as right R-modules, necessarily m 
= n. For such R, the rank of a free R-module can be 

deøned to be the cardinality of a basis. Any øeld has 
ibn, since a vector space over a øeld has a uniquely 
determined dimension. In fact all division rings have 
ibn for the same reason. Any commutative (unital) ring 
R has ibn: if m is a maximal ideal of R and Rn is any 
free R-module, then Rn R (R=m) ' (R=m)n as (R=m)-
modules. But (R=m) is a øeld, so the dimension n is 
uniquely determined. More generally, whenever we 
have a unital ring homomorphism R ! k and k has ibn, 
then R must also have ibn (same proof as above). 
Thus the class of ibn rings is quite large | but not all 
rings have ibn. 

Example. [16] Let V be an inønite-dimensional vector 
space over a øeld and let R = End(V ) be the ring of 
linear endomorphisms V ! V . Then any isomorphism ' : 
V ' V ø V induces an isomorphism of vector spaces R 
= Hom(V; V ) ' Hom(V; V ø V ) ' Hom(V; V ) ø Hom(V; 
V ) = R2: But in fact one checks easily that it is an 
isomorphism of right R-modules, and so we see R ' R2 
' R3 ' ø . So R spectacularly fails to have ibn. 

We've seen two extremes: ibn rings, versus rings with 
R ' R2. Is there a middle ground? For instance, is it 
possible that R ' R2 6' R3? Of course, once R ' R3 we 
necessarily have R2 ' R4 ' R6 ' so we can't expect to 
have arbitrarily wild isomorphisms between free 
modules. In [18], Leavitt introduces the module type of 
a ring R which fails ibn. Let m be the _rst integer such 
that Rm ' Rn for some n > m, and let n be the smallest 
with this property; the pair (m; n) is called the module 
type of R. Thus in the ring R = End(V ) in the above 
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example has module type (1; 2). We note a necessary 
condition for module type (1; n). 

Proposition. Let R be a unital ring. Then R 

Rn if and only if R has elements 

x1, . . . , xn, x∗, . . .  , xn satisfying the relations 

(CK1) x∗xi = 1, and x∗xj = 0 for i = j, 

(CK2) 1 = x1x∗ + · · · + xnxn. 

Proof. If R 

Rn, then R has a basis {x1, . . . , xn} as a right R-
module. Then we may 

write 1 := x1x∗ + · · · + xnxn for some x∗ ∈ R. Note that
 multiplying on the left by xj gives 

xj = x1(x∗xj) + · · · + xn(xnxj) 

LEAVITT AND CUNTZ THEORY 

It was Garrett Birkhoff‘s work in the mid thirties that 
started the general development of lattice theory. In a 
Brilliant series of papers he demonstrated the 
importance of the lattice theory and showed that it ii 
provides a unifying framework for previously unrelated 
developments in any mathematical disciplines. During 
a pivot step, we make the value of a nonbasic variable 
just large enough to get the value of a basic variable 
down to zero. This, however, might never happen. If 
we now try to bring x2 into the basis by increasing its 
value, we notice that none of the tableau equations 
puts a limit on the increment. We can make x2 and z 
arbitrarily large the problem is unbounded.  

By letting x2 go to infinity we get a feasible half line - 
starting from the current BFS - as a witness for the 
unbounded ness. In our case this is the set of feasible 
solutions 

 

 

Such a halfline will typically be the output of the 
algorithm in the unbounded case. Thus, 
unboundedness can quite naturally be handled with 
the existing machinery. In the geometric interpretation 
it just means that the feasible polyhedron P is 
unbounded in the optimization direction. While, we can 
make some nonbasic variable arbitrarily large in the 
unbounded case, just the other extreme happens in 
the degenerate case: some tableau equation limits 
the increment to zero so that no progress in z is 
possible. The only candidate for entering the basis is 
x2, but the first tableau equation shows that its value 
cannot be increased without making x3 negative. This 
may happen whenever in a BFS some basic 
variables assume zero value, and such a situation is 
called degenerate. Unfortunately, the impossibility of 
making progress in this case does not imply 
optimality, so we have to perform a `zero progress' 
pivot step. In our example, bringing x2 into the basis 
results in another degenerate tableau with the same 
BFS. 

 

Nevertheless, the situation has improved. The 
nonbasic variable x1 can be increased now, and by 
entering it into the basis, we already obtain the final 
tableau With optimal BFS x = (x1 ……..x4) = (2,2,0,0) 

 

In this example, after one degenerate pivot we were 
able to make progress again. In general, there might 
be longer runs of degenerate pivots. Even worse, it 
may happen that a tableau repeats itself during a 
sequence of degenerate pivots, so the algorithm can 
go through an infinite sequence of tableaus without 
ever making progress. This phenomenon is known as 
cycling, and an example can be found. If the 
algorithm does not terminate, it must cycle. This 
follows from the fact that there are only finitely many 
different tableaus. 
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and assume there is another tableau T 0 with the 
same basic and non-basic variables, i.e. T is the 
system 

 

By the tableau properties, both systems have the 
same set of solutions. Therefore 

 

must hold for all d-vectors xN, and this implies 

 

T = T‘ There are two standard ways to avoid cycling:  

Bland's smallest subscript rule: If there is more than 
one candidate xk for entering the basis or more than 
one candidate for leaving the basis, which is another 
manifestation of degeneracy, choose the one with 
smallest subscript k.  

Avoid degeneracies altogether by symbolic 
perturbation. By Bland's rule, there is always a way of 
escaping from a sequence of degenerate pivots.  

For this, however, one has to give up the freedom of 
choosing the entering variable. For us it will be crucial 
not to restrict the choice of the entering variable, so we 
will abandon Bland's rule and instead resort to the 
method of symbolic perturbation, although this 
requires more computational effort. In 1854, George 
Boole (1815–1864) introduced an important class of 
algebraic structures in his research work on 
mathematical logic. In his honor these structures have 
been called Boolean algebras. These are special type 
of lattices. In particular, congruence lattices play an 
important role. It was E. Schroder, who about 1890, 
considered the lattice concept in today‘s sense. At 
approximately the same time, R. Dedikind developed a 
similar concept in his work on groups and ideals. 
Dedikind defined modular and distributive lattices 
which are types of lattices of that are important in 
applications. The rapid development of lattice theory 
started around 1930. We could say that Boolean 
lattices or Boolean algebras are the simplest and at 
the same time the most important lattices for 
applications. It was Garrett Birkhoff‘s work in the mid 
thirties that started the general development of lattice 

theory. In a Brilliant series of papers he demonstrated 
the importance of the lattice theory and showed that it 
ii provides a unifying framework for previously 
unrelated developments in any mathematical 
disciplines. During a pivot step, we make the value of 
a nonbasic variable just large enough to get the value 
of a basic variable down to zero. This, however, might 
never happen. If we now try to bring x2 into the basis 
by increasing its value, we notice that none of the 
tableau equations puts a limit on the increment. We 
can make x2 and z arbitrarily large the problem is 
unbounded.+ 
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