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Abstract – This work addresses the question of the efficient numerical solution of time-domain boundary 
integral equations with retarded potentials arising in the problems of acoustic and electromagnetic 
scattering. The convolutional form of the time-domain boundary operators allows to discretize them with 
the help of Runge-Kutta convolution quadrature. In the work it is shown how this property can be used in 
the recursive algorithm to construct only a few matrices with the near-field, while for the rest of the 
matrices the far-field only is assembled. The resulting method allows to solve the three-dimensional wave 
scattering problem with asymptotically almost linear complexity. The efficiency of the approach is 
confirmed by extensive numerical experiments. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

Our approach is conceptually different from the one 
used in the study of W. Hackbusch, W. Kress, and S. 
A. Sauter (2007). We construct the new method 
based on the algorithm of linear complexity, rather 
than back substitution of quadratic complexity. This 
approach allows us to avoid the actual evaluation of 
the convolution weights, thus enabling the use of fast 
techniques based on analytic expansions. 
Computational and storage costs of the improved 
algorithm scale linearly, up to logarithmic factors. 

FAST RUNGE-KUTTA CQ ALGORITHM 

Let us come back to the recursive algorithm. Recall 
that for this algorithm O(N) Galerkin discretizations of 
boundary single-layer operators for the Helmholtz 
equation with decay need to be constructed. A 
straightforward application of the data-sparse 
techniques (i.e. FMM and -matrices) would on its 
own lead to the algorithm of almost linear complexity. 
However, a significant drawback of this approach is 
large constants involved in complexity estimates. Our 
goal is to design a method that would reduce them. 

The data-sparse techniques in question have two 
main bottlenecks: 

• Costly evaluation of singular and nearly 
singular integrals in the near-field; 

• High matrix-vector multiplication costs of the 
high-frequency FMM. 

We overcome the first problem by the use of fast 
decay of convolution weights  away from the 
neighborhood of  We show that within the whole 
recursive algorithm only a few matrices (namely 

 with the near-field need to be constructed, 
while for the rest we can assemble the far-field only. 
To motivate this strategy. 

In the end of this section we demonstrate that 
provided that for the approximation of different 
matrices a choice between -matrix techniques and 
the HF FMM is made properly, the problem of high 
matrix-vector multiplication costs of the IIF FMM 
ceases to exist. 

MOTIVATION 

The evaluation of the near-field integrals is 
commonly done with the help of coordinate 
transformation techniques. Given the kernel k(x,y) of 
a boundary single layer operator (that maps from 

 to ), the evaluation of 

 

with the accuracy sufficient to preserve the stability 
and convergence of the Galerkin method, requires 
that the quadrature order scales as  if 

 if  (nearly 

singular integrals) and 0 (1) if  Thus 
the computation of the near-field (singular and nearly 

singular integrals) of one matrix is of  
complexity. Within the recursive convolution 
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quadrature algorithm  such matrices need to be 
assembled, hence resulting in the total complexity 

 

The question of the efficient evaluation of singular 
and nearly singular integrals was addressed in recent 
works. Particularly, such integrals were represented 
as functions of multiple parameters and efficiently 
computed using interpolation and tensor 
decomposition techniques. The effect of the 
application of such techniques on the full -matrix 
assembly time was numerically studied. For the 
Laplace boundary single layer operator on various 
geometries it was demonstrated that the 50%-70% 
reduction of the time required for the evaluation of 
the nearly singular and weakly singular integrals 

results in the 10%-20% reduction of the total -
matrix assembly time. Given the bound on the ranks 

of -matrix r, the rest of the time is spent for the 

evaluation of  far-field integrals within the 

ACA+ procedure of the -matrix construction. If the 
evaluation of the far-field is done in a more efficient 
manner, the gain can be significantly larger. And this 
is the case for the fast multipole methods. 

The precomputation time (i.e. time needed for the 
construction of the translation operators) for the HF 

FMM scales as  (assuming ) for 
the wavenumber ) and the constants involved 
are significantly smaller than that for the -matrix 
assembly. This can be seen in the experiments of D. 
Brunner, M. Junge, P. Rapp, M. Bebendorf, and L. 
Gaul (2010), where the IIF FMM precomputation 
times were reported to be in practice 9-20 times 
smaller than that for the -matrix construction. This 
can be also observed in the numerical experiments in 
Section 2.3. In the study of M. Fischer (2004), the 
time to compute the near-field for the HF FMM 
accelerated Burton-Miller formulation is compared to 
the time needed to construct the corresponding IIF 
FMM translation matrices. The results show that for 
BEM discretizations with 10

3
 - HP triangular 

boundary elements the computation of the near-field 
is typically order of magnitude slower than the 
assembly of translation matrices. 

However the actual constants depend much on the 
implementation and the desired accuracy. 
Nevertheless, for large problems we should be able 
to see the improvement if we skip constructing the 
near-field. Asymptotic complexity estimates are 
improved as well. Indeed, while the application of 
ACA/ACA+ based -matrix techniques requires the 
evaluation of 4-dimensional integrals, for the use of 
the HF FMM in the far-field only the evaluation of 
two-dimensional integrals (for the cluster basis) is 
needed. We perform this step not during the 
precomputation stage, but when compute matrix-
vector products (this allows to avoid storing the 
cluster basis for all matrices and thus improves 
memory costs). Therefore the relative improvement 

in the precomputation time if the near-field is not 
constructed is even more drastic. 

Since in the course of the recursive algorithm, the 
matrix- vector multiplication with the same matrix 
block is performed multiple times, it makes sense to 
precompute the corresponding discretizations of 
boundary integral operators and keep them in 
memory, rather than recompute them every time the 
matrix-vector multiplication is needed. For the 
matrices that are approximated with the help of the 
fast multipole method the near-field and translation 
operators can be stored. If only a small part of 
matrices has the near-field, the storage costs needed 
for HF FMM approximated matrices can be affected 
as well. Given the HF FMM approximation of  
the storage for its far-field part (translation matrices 
of the FMM) scales as 

 

where we assumed  while for the near-

field  

Hence, as  is smaller than (though 
only by a logarithmic term). The improvement in the 
storage costs can be achieved only in the case 
when the constants in  are so small that even for 
rather large M,  As our numerical 
experiments in Section 4 show, in practice this is 
often the case. 

The presence of decay, i.e. in the case when 
 facilitates the reduction of storage 

costs. If s1 is large enough, for such discretizations 

 the far-field part  

 

see also Figure 1. 

 

Figure 1: Frequencies s for which we need to 
construct discretizations of boundary single-layer 
operators ; they are computed as eigenvalues 

of  Here h=1. While many 
frequencies arc located close to the imaginary axis, 
a significant part of frequencies has  (high-
decay case). A large part of the far-field of the 
corresponding matrices  is negligibly small and 
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can be a priori ignored when constructing these 
matrices. 

NEAR-FIELD REUSE 

Auxiliary Relations on Leaves of a Block-Clustcr 
Tree -  

Before describing our strategy for dealing with the 
near-field, we introduce two auxiliary relations 
defined on leaves of a block-cluster tree, namely the 
near-field d-admissibility and the far-field d-
admissibility. Recall that given a cluster  the center 
of its bounding box we denote by  and the 
diameter of the bounding box by . 

Definition 5.1. Given  we will call a leaf  

near-field d-admissible if   

Definition 1. Given  a leaf  is far-field D-

admissible if  

Remark 1. The following properties hold: 

(1) If  is near-field d-admissible then 

 

(2) If  is not far-field D-admissible then 

 

We will denote the set of near-field d-admissible 
leaves ofa block-cluster tree  by  and the 
set of far-field D-admissible leaves by  

Remark 2. The following observation is crucial for 

our algorithm. Recall that  is defined as the 
set of all non-admissible block-clusters of the block-
cluster tree  Then it. is possible to choose d s.t. 

  (1) 

This follows from the definition of the admissibility 
condition. Namely, given  non-admissible leaves 

 satisfy 

 

where  are the centers of bounding boxes of 

 and  are their diameters. The choice 

 (2) 

ensures that (1) holds true. 

Now we have all the ingredients needed to describe 
fast Runge-Kutta convolution quadrature. 

 

Main Ideas and Algorithmic Realization- 

Consider the matrix-vector product, namely 

 (3) 

After the discretization in space with the help of the 
Galerkin method (with trial and test basis 

functions the above system of 
equations can be rewritten as: 

 (4) 

where 

 

and  is the kernel function 

 (5) 

Let d he chosen as in (2). The double integral in (4) 
can be split into a sum of two double integrals: one 
over the leaves of the block-cluster tree belonging to 
the set  and the other being the remainder. 
Namely, 

 (5.6) 

 (5.7) 

 

where  In this case 

 does not contain the near-field, since all 
non-admissible block-clusters belong to 

 Since  are matrix-valued functions, 

 and  are tensors. 

First, we demonstrate why such splitting may 
improve storage and computational costs. The 

bounds show that, for any given  there exists L,  

 for all  and    (8) 
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Let 

 

We assume w.l.o.g. that 

  (9) 

Then some of the elements of the tensor  are 
approximately equal to zero. Let us show 

this. For  

 

Recall that the boundary single-layer operator for the 
Laplacian is continuous from . Hence, for 

some  that depends only on  it holds: 

 (5.10) 

where 

= meas(supp( )), i, j = 1,... M. 

Then e can always be chosen so that up to a desired 
precision  can be rewritten as 

 (5.11) 

where 

 (12) 

Hence, to approximate completely the near-field part 
of the matrix of the system (3), only O(L) Galerkin 
matrices 

 

need to be constructed. In practice we do not 
assemble these matrices, but rather evaluate the 
matrix-vector product with  with the help of either 
of two procedures we present below. Before 
describing these procedures, we would like to show 
that  

 

and does not depend on the size of the system. 
Recall that the diameter of non- admissible clusters 

 

where  is the meshwidth (this is by construction of 
the admissible block-cluster tree). Hence, by (2), for 
some  

 

Since  for some  

 

Importantly,  is constant and does not depend on 
h and  The estimate on L can be obtained, 
choosing a priori  Namely, there exist 
constants  s.t. 

 

Then L can be estimated from: 

 

From this it follows that for a fixed accuracy   

 

Remark 3. Increasing the value of d allows to reuse 
a pan of the far-field as well. 

Remark 4. We do not address here the question 
how  has to be chosen to preserve the stability 
and convergence of the method. A full analysis 
would require the combination of the estimates of L. 
Banjai and S. Sauter (2008). In particular, it is 
shown that the convergence of the sparse DDF2 
convolution quadrature is preserved if the 
convolution weights are cut off with the accuracy e 

satisfying  We expect similar 
estimates to hold for our case as well, since all the 
errors are linear, and bounds for the errors and 
operator norms depend on h,  polynomially or as 
powers (positive or negative) of h,  

Next the question of the efficient evaluation of a 
matrix vector product with the system (5.11) is 
addressed. We suggest the use of either of two 
methods. 
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Remarks on the Application of Data-Sparse 
Techniques and Paral- lellization 

In this section we would like to address several 
questions on the application of data-sparse 
techniques, -matrices and the high-frequency fast 
multipole method, for approximating Galerkin 
discretizations of boundary integral operators in the 
course of the recursive algorithm. Recall that the 
setup time (i.e. the matrix assembly time) of -
matrices that use expansions coming from the HF 
FMM is much smaller than that of -matrices. How-
ever, the corresponding IIF FMM accelerated matrix-
vector multiplications are significantly slower than the 
matrix-vector multiplications with -matrices, even 
for discretizations with about 10° boundary elements 
. 

The structure of the system of equations we need to 
solve is shown in Figure 5.2.  

 

Figure 2: The structure of the matrix of the 
convolution quadrature system of equations. 

The solution of the small triangular system of size J 
(where the matrix to is involved) has to be performed 

 times. Since this operation requires the 
construction of only a few matrices and performing 
many matrix-vector multiplications with them, it 
makes scene to approximate these matrices by -
matrix techniques. Additionally, matrix-vector 
multiplications with matrix blocks at the lower levels 
of the recursive algorithm (in the figure these blocks 
are marked by Ti) need to be performed more often 
than that with the matrix blocks located at the higher 
levels of the recursive algorithm (To). Hence, for 
large problems it is reasonable to employ pure -
matrix approximations in this case. For the rest of the 
Toeplitz blocks the choice whether - or  -
based approximation is to be used is done. The 
advantage of the recursive algorithm is its easy 
parallelizabilitv. The precomputation of Galerkin 
discretizations of boundary integral operators can be 
done independently in 

FAST CQ ALGORITHM AND ITS 
COMPLEXITY 

In this section the fast Runge-Kutta convolution 
quadrature algorithm is described. Compared to the 
conventional recursive algorithm, the multiplication 
with Toeplitz matrix blocks is replaced by the 
improved procedure. 

We substitute the procedure Multiply for the 
multiplication of the following matrix- vector product 

 

by the two procedures. 

MultiplyNF -performs the matrix-vector 
multiplication with the near-field: 

 

MultiplyFF - performs the matrix-vector 
multiplication with the far-field: 

 

Let the parameter J be fixed: every system of size 
smaller than J is to be solved directly. 

function Solve   

if  then 

SolveBasici  

Else 

 

Solve  

MultiplyNF  

MultiplyFF  

 

Solve  

end if 

endFunction 
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Let us disciuss the complexity of this algorithm based 
on the preliminary estimates. Compared to the 
conventional recursive algorithm, the new algorithm 
performs an extra block matrix-vector multiplication 
with the near-field matrices. The computational 
complexity of each of matrix-vector multiplication with 
the near-field matrices is either 

 (if the near-field 
matrix-vector multiplication with the diagonalization is 

used) or  see Remark 5.4. 
Totally, there are  matrix blocks (4), hence the 
total complexity of the near-field related matrix-vector 

multiplications is  

The number of matrix-vector multiplications with the 
far-field matrices is  while each of this 
matrix-vector multiplications requires about 

 operations (here the hidden constant 
depends on the accuracy of the approximation. 
Hence, the total complexity of the algorithm is 

 

The memory costs for the near-field matrices scale 
linearly,  while for the rest of the matrices 

as  As before, for the matrices with the 
far-field in this complexity estimate there is a hidden 
constant that depends on the accuracy of the 
approximation. 

The construction times for -matrices scale as 

 where  is the com plexity of the 
evaluation of the integrals in BEM, see also the 

discussion . Since we use the technique,  scales 
not worse than  for  (in our case 

). The construction times for -

matrices scale as  The hidden constants 
in these complexity estimates depend on the 
accuracy of the matrix approximations. 

Combined with the use of data-sparse techniques 
and the complexity estimates, the computational 
complexity of the Solve procedure is not worse than 

 the time to construct the matrices 

 for  and the storage costs 
are  

CONCLUSION 

In this work we built up a quick recursive Runge-
Kutta convolution quadrature algorithm for the 
solution of the wave scattering problem in three 
dimensions. This method requires the construction of 
Galerkin discretizations of boundary integral 
administrators for the Helmholtz equation with rot. 

Fast Runge-Kutta convolution quadrature is based 
on two ingredients: the use of fast data-sparse 
techniques, namely the high-frequency fast multipole 
method and H-matrices, and decay properties of 
Runge-Kutta convolution weights (that are the 

consequence of the Huygens principle). The use of 
the data-sparse techniques allows to solve the 
scattering problem in almost linear time. 

Exponentially fast decay of convolution weights  

away from the neighborhood of  allows to 
skip constructing the diagonal and near-diagonal 
matrix blocks for most of the boundary integral 
operator discretizations, thus avoiding the evaluation 
of many singular and near-singular BEM integrals. 
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