
 

 

 

 

Versha Chopra* 

w
w

w
.i
g

n
it

e
d

.i
n

 

973 
 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 13, Issue No. 1, April-2017, ISSN 2230-7540 

 

An Analysis on Metric Spaces and Its 
Continuity: Some Aspects 

 

Versha Chopra* 

 

Abstract – Metric spaces, which generalize the properties of usually experienced physical and abstract 
spaces into a mathematical structure. This paper will acquaint the peruser with the idea of metric spaces 
and continuity. A ton accentuation has been given to propel the thoughts under talk to enable the peruser 
to create ability in utilizing his creative mind to envision the abstract idea of the subject. Assortment of 
examples alongside genuine applications have been given to comprehend and value the excellence of 
metric spaces. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

A metric space is a non-empty set furnished with 
structure controlled by a well-characterized thought 
of distance. A large number of the arguments you 
have found in a few variable calculus are practically 
indistinguishable from the relating arguments in 
single variable calculus, particularly arguments 
concerning convergence and continuity. The 
explanation is that the thoughts of convergence and 
continuity can be formulated as far as distance, and 
that the idea of distance between numbers that you 
need in single variable theory, is fundamentally the 
same as the thought of distance between points or 
vectors that you need in the theory of functions of 
severable variables. In further developed science, we 
have to discover the distance between more 
convoluted articles than numbers and vectors, for 
example between groupings, sets and functions. 
These new thoughts of distance prompts new ideas 
of convergence and continuity, and these again lead 
to new arguments surprisingly like those you have 
just found in single and a few variable calculus.  

Sooner or later it turns out to be very exhausting to 
perform nearly similar arguments again and again in 
new settings, and one starts to think about whether 
there is general theory that covers every one of these 
examples {is it conceivable to build up a general 
theory of distance where we can demonstrate the 
outcomes we need for the last time? The answer is 
truly, and the theory is known as the theory of metric 
spaces. 

Metric Space- 

Give x a chance to be any set and give  a 
chance to be a genuine esteemed capacity fulfilling 
the accompanying properties:  

P1.  for all  

P2.  

P3. d(x,y) = d(y,x) for each of the  

P4.  for all   

The capacity d is known as a metric on x (in some 
cases the distance work on x). The ordered pair 
(x,d) is known as a metric space. In this manner a 
metric space comprises of a non-empty set 
furnished with an idea of distance (metric). In the 
event that there is no equivocalness on the metric 
considered, at that point we essentially mean the 
metric space (x,d) by x. We allude the components 
in x as points and d(x,y) as the distance between 
the points x and y.  

Inconsequentially, an empty capacity is the main 
metric on the empty set. Additionally, inferable from 
condition second, the main metric on a singleton set 
is the zero capacity. 

METRIC SPACES : SOME EXAMPLES 

Example 1 : The Real Line  

Let  be the set of all real numbers and  
be a function defined as 

 

Then we shall prove that u is a metric on  

First observe that by definition, . 
Therefore PI holds. 
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For any x,y in  

Therefore P2 holds. 

Again, for any x,y in  

 

Therefore P3 holds. 

To see the triangle inequality (P4), suppose  
be an three points. 

Consider 

  

It follows that  

Thus all the four axioms are satisfied. Hence u is a 

metric on  and the ordered pair  is a metric 
space. The metric u is called the usual or standard 
metric or Euclidean metric on  

Example 2 : The Euclidean Metric on  (Extension 

of Euclidean metric on ) 

Let  be the set of all complex number and 

 be a function defined as 

 

Then d is a metric on  called the usual metric or 

Euclidean Metric on  Of course, d is an extension 

to  of the Euclidean metric u on  i.e.,  

Example 3 : Maximum Metric on  

Let  be the set of all ordered pairs of real numbers 
and  be a function defined as 

 

 

We shall show that d is a metric on  

By definition, d is a non-negative function and hence 
PI holds. 

For P2, consider any  

 

For any  

 

Thus P3 is satisfied. 

To see triangle inequality (P4), let  

 be any points in 
 Consider 

 

 

i.e.,  ------------------------(A) 

Similarly, 

 ------------------------ (B) 

From (A) and (B) it follows that 

 

i.e.,  

Hence the triangle inequality holds and therefore d is 
a metric on  

GEOMETRY OF METRIC SPACES 

Before we take a gander at what it implies for a 
grouping to be convergent regarding a given metric, 
we invest a little energy examining one method for 
increasing some comprehension about the geometric 
importance of a given metric.  

In the last subsection, we met three distinct metrics: 
the discrete metric, the taxicab metric on the plane 
and a blended metric on the plane (which was 
shaped from the typical distance in R together with 
the discrete metric).  

A simple method to increase some understanding 
into the conduct of a metric is to take a gander at the 
balls around a given point. For the standard 

Euclidean distance in  a bundle of sweep r around 
a point  comprises of each one of those points 
whose distance from an is all things considered r, 
and this definition normally reaches out to general 
metric spaces. In any case, in the accompanying 
definition we take care to recognize balls that 
incorporate points at precisely distance r from the 
inside an and those that don't. 
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Definition 1 Open and closed balls 

Let (X, d) be a metric space, and let  and  

The open ball of radius r with centre a is the set 

 

The closed ball of radius r with centre a is the set 

 

The sphere of radius r with centre a is the set 

 

When r = 1, these sets are called respectively the 
unit open ball with centre a, the unit closed ball with 
centre a and the unit sphere with centre a. 

SEQUENCES IN METRIC SPACES 

Since we have a few examples of metric spaces 
accessible to us, we come back to the problem of 
characterizing continuous functions between metric 
spaces.  

Since the definition of a general metric space is 
displayed on the properties of the Euclidean metric 

 on  and we characterized continuity of 
functions between Euclidean spaces as far as 
convergent sequences, it is natural to endeavor to 
expand our thoughts regarding convergent 
sequences in  to general metric spaces. Truth be 
told, we did a great part of the difficult work when we 
generalized from the thought of convergence for 
genuine esteemed sequences to that of convergence 
of sequences in  it is currently just a short 
advance to build up these ideas for the metric space 
setting.  

We saw that a genuine grouping can be thought of 

as a function  given by  Note that the 
only role played by  here is as the codomain of the 

function  the structure of  becomes 
important just when convergence is considered. 
Since the codomain of a function is basically a set, 
the accompanying definition is a natural 
generalization. 

Definition 1 Sequence in a metric space 

Let A be a set. A sequence in X is an unending 
ordered list of elements of X: 

 

The element a* is the kth term of the sequence, and 

the whole sequence is denoted by  

Note that this definition of a sequence does not 
require that we impose any additional structure (such 
as a metric) on the set X. 

The definition of what it means for a sequence to 
converge in a metric space (X, d) is closely based on 
the definition of convergence in  

Definition 2 Convergence in a metric space 

Let (X.d) be a metric space. A sequence (ak) in X d-
converges to  if the sequence of real numbers 

 is a null sequence. 

We write  as   or simply  if the 
context is clear. 

We say that the sequence  is convergent in (X,d) 
with limit a. 

A sequence that does not converge (with respect to 
the metric d) to any point in X is said to be d-
divergent.. 

CONTINUITY IN METRIC SPACES 

Now that we know what it means for a sequence to 
converge in a metric space, we can formulate a 
definition of continuity for functions between metric 
spaces. 

Definition 1 Continuity for metric spaces 

Let (X, d) and (Y, e) be metric spaces and let 

 be a function. 

Then f is (d, e)-continuous at  if: 

Whenever  is a sequence in X for which  

as  then the sequence  as  

If f does not satisfy this condition at some -that 

is, there is a sequence  in X for which  as 

 but  does not converge to  then we 
say that f is (d, e)-discontinuous at a. 

A function that is continuous at all points of X is said 
to be (d, e)-continuous on X (or simply continuous, 
if no ambiguity is possible). 

METRIC SUBSPACES AND METRIC 
SUPERSPACES 

Definition 1 (Subspace of a Metric Space) 
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Let (x,d) be a metric space and  be any 
nonempty set. Let dY be the restriction of d to the set 

Y x Y i.e,  given as 

 i.e.,  

Since d is a metric on x, along these lines the 

mapping  is a metric on Y and is known as the 

relative metric initiated on Y by d. The space   
is known as the metric subspace of the metric space 
(x,d). 

Example 1 Consider the real line  with usual 

metric u given by and 

the complex plane  with usual metric d given by 

  

From definition of u and d, it is clear that 

 i.e.,  

Therefore  is a metric subspace of the complex 

plane  

Example 2 Any subset of  (for eg.  

 etc.) is a metric subspace of 

the real line  

Definition 2 (Superspace of a Metric Space) 

If y is a metric space and x is a subset of Y, we can 
induce metric on x by restricting the metric of Y on x. 
The question arises, can we do the reverse thing? 

Suppose (x,d) is a metric space and Y is a proper 
superset of x. Can we define a metric on Y that is an 
extension of d? The answer is yes and it can be 
done in several ways, but we shall elaborate only 
one method. 

Consider a metric space (x,d) and . Since Y\x is 

non-empty, take any metric on Y\x. Choose and fix 

two points  and   

Now define  as 

 

Then D is a metric on Y such that  
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