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Abstract – The aim of this chapter is to present necessary background material from the areas of fractal 
geometry, symbolic dynamics   and renewal theory. To that end, we state various well-known results and 
examples, but also give some new results. With these foundations and those of Chapter 3, we will be able 
to achieve our overall goal of constructing and developing a theory of noncommutative fractal geometry. 
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INTRODUCTION 

FRACTAL GEOMETRY 

Let us begin by collecting relevant results from fractal 
geometry. The majority of the material detailed here is 
well-known and so is stated here without proof, with 
the exception of the final two results of Subsection 
2.1.3 which do not seem to appear in the current 
literature. For the interested reader, there is an 
extensive literature available, with good overviews 
contained in [Fal1, Fal3, Man4, Pol2]. 

FRACTAL MEASURES AND DIMENSIONS 

In the foundational essay [Man3], Mandelbrot 
introduced the subject of fractal geometry. One of the 
main motivations was to introduce tools which would 
be able to deal with irregular and fragmented patterns 
which occur in nature and science. Often, unlike 
\smooth" objects whose structure becomes simpler on 
a shrinking scale, fractal objects tend to be irregular or 
fragmented on a shrinking scale. Therefore, fractal 
sets are too irregular to be described either locally or 
globally with traditional geometric tools. Various 
attempts have been made to give a mathematically 
precise definition of a fractal, but in general such 
definitions have proven to be unsatisfactory. 
Therefore, it is often the case that a set is described as 
being fractal if it satisfies certain characteristics, for 
instance the above-described irregularity at all scales. 
Another characteristic is having a non-integer Hausdor 
fidimension, which is obtained from the Hausdorfi 
measure, where the Hausdor fi measure is defined in 
an analogous way to the n-dimensional Lebesgue 
measure, for n 2 N. In what follows, let n 2 N be fix.  

 Let E denote a subset of Rn, let s > 0 and let fi> 0. 
Define 

 

to be the ø approximation to the s-dimensional 
Hausdor measure and deøne 

 

The following theorem gives a simple way of 
calculating the Hausdorfi  dimension of self-similar 
sets satisfying the strong separation condition. In fact, 
the theorem holds under a slightly weaker condition, 
namely, the open set condition It is well-known that 
any compact totally disMeasurementected subset E 
of R with no isolated points is homeomorphic to the 
middle third Cantor set (see Corollary 30>4 of [Wil]). 
Therefore, we can view E in terms of its complement, 
that is, as a family of disjoint open intervals fIk > k 2 
Ng. When viewing E in this way, it will always be 
assumed that the complementary intervals Ik are 
ordered so that their lengths are non-increasing. If, in 
addition, one imposes a certain porosity condition on 

E, then one obtains bounds on the rate of decrease 
of the lengths of the complementary intervals and that 
the Hausdorø dimension must be strictly positive. The 
porosity condition with which we shall be concerned 
(especially in Subsection 4.1.2) is the following. We 
show how multifractal properties of a Borel probability 
measure ø supported on a non-empty compact fractal 
set E of R satisfying a certain porosity condition1 can 
be expressed in terms of the complementary intervals 
of the support of ø (by a fractal set we mean a non-
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empty totally dis Measurementected space with no 
isolated points). This allows the development of a 
noncommutative analogue of a coarse multifractal 
formalism for Measurementes' spectral triple 
representation of the set E. Speciøcally, we prove that 
from this new development one can recover the 
coarse multifractal box-counting dimension of ø. For a 
self-similar measure ø, given by an iterated function 
system S, we then show that our noncommutative 
coarse multifractal formalism gives rise to a 
noncommutative integral which recovers the 
associated self-similar multifractal measure ø, and we 
establish a relationship between the volume of such a 
noncommutative integral and the measure theoretical 
entropy of ø with respect to S. By reøning the methods 
of Antonescu-Ivan and Christensen given in [AIC1], we 
derive a (1; +)-summable spectral triple for each one-
sided topologically exact subshift of ønite type (ø1A ; 
ø) equipped with an equilibrium measure øø (where ø 
2 C(ø1A ;C) denotes some Holder continuous non-
arithmetic potential function). We show that a variety of 
geometric and measure theoretic information can be 
recovered form such a spectral triple. We prove that 
Measurementes' pseudo-metric, given by our spectral 
triple, is a metric on the state space S(C(ø1A ;C)) of 
the Cø-algebra of complexvalued continuous functions 
deøned on ø1A , and that the topology induced by this 
metric is equivalent to the weakø-topology on S(C(ø1A 
;C)). We show that the noncommutative integration 
theory of our spectral triple is capable of recovering 
the measure øø and that the noncommutative volume 
is equal to the reciprocal of the measure theoretical 
entropy of øø with respect to the left shift ø. 

MOTIVATION AND HISTORY 

In the 1980s Measurementes formalised the notion of 
noncommutative geometry (see for instance [Con3, 
Con1]) and, in doing so, showed that the tools of 
differential geometry can be extended to certain non-
Hausdor spaces known as bad quotients" and to 
spaces of a \fractal" nature. Such spaces are 
abundant in nature and commonly arise from various 
dynamical systems. A main idea of noncommutative 
geometry is to analyse geometric spaces using 
operator algebras, particularly Cfi-algebras. This idea 
first appeared in the work of Gelfand and Nafifimark 
[GN], where it was shown that a Cfi-algebra can be 
seen as the noncommutative analogue of the space of 
complex-valued continuous functions on a locally 
compact metric space Also, note that for a smooth 
compact spin Riemannian manifold, one can recover 
its smooth structure, its volume and its Riemannian 
metric directly from its standard Dirac operator (see 
[Jos]). Motivated by these observations, 
Measurementes proposed the concept of a spectral 
triple. A spectral triple is a triple (A;H;D) consisting of a 
Cfi-algebra A, which acts faithfully on a separable 
Hilbert space H, and an essentially self-adjoint 
unbounded operator D defined on H with compact 
resolvent such that the set 

 

is dense in A. (Here fi > A ! B(H) denotes the faithful 
action of A on H.) Measurementes showed that with 
such a structure one can obtain a pseudo-metric on 
the state space S(A) of A, analogous to how the 
Monge-Kantorovitch metric is defined on the space of 
probability measures on a compact metric space. In 
1998 Riefiel [Rie2] and Pavlovific [Pav] established 
conditions under which Measurementes' pseudo-
metric is a metric and established conditions under 
which the metric topology of Measurementes' pseudo-
metric is equivalent to the weakfi-topology defined on 
S(A). Also, Measurementes [Con3] showed that a 
notion of dimension (called the metric dimension) and 
that a theory of integration can be derived for such 
structures. He also proved that for an arbitrary smooth 
compact spin Riemannian manifold there exists a 
spectral triple from which the metrical information, the 
measure theoretical information and the smooth 
structure of the manifold can be recovered (see [Con3, 
Ren]). This illustrates that a spectral triple allows one 
to move beyond the limits of classical Riemannian 
geometry. That is to say, not only is one able to 
recover classical aspects of Riemannian geometry, but 
through the notion of a spectral triple one is able to 
extend the tools of Riemannian geometry to situations 
that present themselves at the boundary of classically 
defined objects, for instance, objects which live" on the 
boundary of Teichmuller space (such as the 
noncommutative torus) or those of a fractal" nature 
(such as the middle third Cantor set). Although one of 
the original motivations for noncommutative geometry 
was to be able to deal with non-Hausdorfi spaces, 
such as foliated manifolds, which are often best 
represented by a noncommutative Cfi-algebra (see 
[Con3, Vfiar, Mar, Rie3]), this new theory has scope, 
even when the Cfi-algebra is commutative. 

ANALYSIS OF THE STUDY 

The material contained in this subsection forms the 
final section of the paper by Falconer and Samuel 
[FS]. Our main aim is to show how certain coarse 
multifractal information of a measure supported on a 
compact \fractal" subset of [0; 1] satisfying a porosity 
condition can be rediscovered through Connes' 
spectral triple, as given in Proposition 4.1.2. Recall 
that we let E denote a strongly porous compact totally 
disconnected subset of R with no isolated points, 
where we assume, without loss of generality, that f0; 
1g ø E ø [0; 1]. Further, recall that we let fIk >= (bøk ; 
b+k ) > k 2 Ng denote the set of complementary 
intervals of E  of finite length, ordered so that jIkj > 
jIk+1j. 

for a given q 2 R the critical value 

 

reects the behaviour of the multifractal moment sums 
of E, given that E is strongly porous and that ø 
satisøes the mild density condition given in Equation 
(4.10). Moreover, from this result, in Corollary 4.1.10, 
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we show that the noncommutative integral gives rise to 
a non-degenerate integral with respect to the 
underlying measure. 

METHODS AND METHODOLOGY 

In order to show that U = ѵ, we use a scaling 
argument to show that U and ѵ agree on a semi-ring 
which generates the Borel ѵ-algebra. Then by an 
application of the Hahn-Kolmogorov Theorem 
(Theorem 3.3.5) the result follows. To this end, 
consider (i1; i2; > > > ; ik) 2 f1; 2; > > > ;mgk and let I 
>= si1si2 > > > sik (E). Then the singular values of 
ѵ(ѵI )Qq ѵ;ѵjDjøb(q) are precisely those 
corresponding to the complementary intervals 
contained in I and those corresponding to the 
complementary intervals whose closure intersects the 
boundary of I. Next, note that the following hold. 

1. The mapping si1si2 > > > sik gives a bijection 
between the sets fIk > k 2 Ng and fIk > k N 
and Ik ø Ig. 

2. For any interval J ø [0; 1], we have jsi1si2 > > 
> sik (J)j = ri1ri2 > > > rik jJj. 

3. For any interval J ø [0; 1] of suøciently small 
diameter, we have that ø(si1si2 > > > sik (J)) 
pi1pi2 > > > pikø(J). 

4. The Dixmier trace is linear and vanishes on 
operators with ønite dimensional range. 

Observe that the set C(ø1A ;C) equipped with the 
supremum norm is a Cø-algebra, that L2(ø1A ; B; øø) 
is a complex Hilbert space and that (ø;L2(ø1A ; B; øø)) 
is a faithful ø-representation of C(ø1A ;C). Further, we 
have seen that Døø is a well deøned unbounded 
operator. Next, observe that the kernel of Døø consists 
of all equivalence classes of L2(ø1A ; B; øø) which 
contain some constant function on ø1A . Moreover, by 
the properties of a Gibbs measure, we have that Dø1 
øø is a bounded operator on the complex Hilbert 
space ker(Døø)? ø L2(ø1A ; B; øø). Hence, the 
operator (1+D2 øø)ø1=2 is a bounded operator which 
can be approximated by operators in B(ker(Døø)?) 
with ønite dimensional ra ge. Therefore, Døø has a 
compact resolvent. Moreover, the sets Ran(Døøøi1) 
are L2-norm-dense in L2(ø1A ; B; øø). This follows, 
since the set of locally constant functions is L2- norm-
dense in L2(ø1A ; B; øø), since the operator (Døøøi1) 
is linear and since we have the following. 

The Dixmier Ideal and The Dixmier Trace 

Here we give a complete proof (of our own design) of 
the fact that for a complex separable Hilbert space H, 
the Dixmier ideal L1;+(H) is an ideal of B(H) and that 
the Dixmier trace is a singular trace deøned on 
L1;+(H). The original proof can be found in [Dix1]. 

Before proving the main results we give several 
eigenvalue inequalities which will be required. Further, 
throughout this section, we let H denote a complex 
separable Hilbert space. 

Lemma A.3.1. For each T 2 K(H) and each k 2 N, we 
have that øk(T) = øk(Tø). (Recall that øk(T) denotes 
the k-th largest singular value of T, where k 2 N.) 

Proof. If h1 2 H is a non-zero eigenvector of TøT with 
eigenvalue z1 , then TøT(h1)øz1h1 = 0, and so 
TTøT(h1)øz1T(h1) = 0. Therefore, T(h1) is a non-zero 
eigenvector of TTø with the eigenvalue z1 . Similarly, if 
h2 is an eigenvector of TTø with eigenvalue z2 , then 
Tø(h2) is an eigenvector of TøT with eigenvalue z2 . 
Further, if h3 and h4 are two non-zero orthogonal 
eigenvectors of TøT with non-zero eigenvalue z3 , 
then we have that 

 

Thus, TøT and TTø have the same eigenvalues with 
the same multiplicity. Note that we have implicitly 
used the assumption that T is compact, since we 
have used the fact that the eigen space of an eigen 
value of a compact operator is ønite dimensional. 

CONCLUSION 

In this thesis examples of spectral triples, which 
represent fractal sets, are examined and new insights 
into their noncommutative geometries are obtained. 

Firstly, starting with Connes' spectral triple for a non-
empty compact totally disconnected subset E of R 
with no isolated points, we develop a 
noncommutative coarse multifractal formalism. 
Specifically, we show how multifractal properties of a 
measure supported on E can be expressed in terms 
of a spectral triple and the Dixmier trace of certain 
operators. If E satisøes a given porosity condition, 
then we prove that the coarse multifractal box-
counting dimension can be recovered. We show that 
for a self-similar measure ø, given by an iterated 
function system S deøned on a compact subset of R 
satisfying the strong separation condition, our 
noncommutative coarse multifractal formalism gives 
rise to a noncommutative integral which recovers the 
self-similar multifractal measure ø associated to ø, 
and we establish a relationship between the 
noncommutative volume of such a noncommutative 
integral and the measure theoretical entropy of ø with 
respect to S. Secondly, motivated by the results of 
Antonescu-Ivan and Christensen, we construct a 
family of (1; +)-summable spectral triples for a one-
sided topologically exact subshift of ønite type (øN A ; 
ø). These spectral triples are constructed using 
equilibrium measures obtained from the Perron- 
Frobenius-Ruelle operator, whose potential function 
is non-arithemetic and Holder continuous. We show 
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that the Connes' pseudo-metric, given by any one of 
these spectral triples, is a metric and that the metric 
topology agrees with the weakø-topology on the state 
space S(C(øN A );C). For each equilibrium measure 
øø we show that the noncommuative volume of the 
associated spectral triple is equal to the reciprocal of 
the measure theoretical entropy of øø with respect to 
the left shift ø (where it is assumed, without loss of 
generality, that the pressure of the potential function is 
equal to zero). We also show that the measure øø can 
be fully recovered from the noncommutative 
integration theory. 

OUTLINE AND STATEMENT OF MAIN 
RESULTS 

The main contributions of this thesis are contained. 
where our core results are contained in we give new 
results which are both interesting themselves and 
essential to the proofs of our main results. Below, we 
give a more detailed outline of the work carried out in 
this thesis. In this chapter, we begin by discussing 
some of the basic aspects of fractal geometry that will 
be required in the subsequent chapters. The _rst 
section, Section 2.1, is split into three main parts. A 
general and brief introduction to fractal measures and 
dimensions (Subsection 2.1.1), a brief review of the 
Minkowski content of a subset of R (Subsection 2.1.2) 
and _nally an introduction to the notions of coarse 
multifractal analysis (Subsection 2.1.3). The material 
contained in Subsection 2.1.1 and Subsection 2.1.2 is 
standard in the theory of fractal geometry and these 
subsections are respectively based on material 
contained in [Fal1] and [Fal2]. In Subsection 2.1.3, we 
de_ne the coarse multifractal box-counting dimension 
b(q) at q 2 R for a given Borel probability measure _ 
with compact support, where we use the extension for 
negative q introduced by Riedi [Rie1]. We then prove 
that an equivalent de_nition of b exists in terms of the 
complement of the support of _, provided that the 
support of _ is strongly porous In the next, we 
introduce the concept of a one-sided subshift of _nite 
type. We describe the thermodynamic formalism for 
this setting, as developed by Bowen and Ruelle 
([Bow1, Bow2, Rue1, Rue2]). We state the results 
which give the existence of a Gibbs measure and the 
existence and uniqueness of an equilibrium measure 
on a one-sided topologically exact subshift of _nite 
type. Finally, in Theorem 2.2.10, a new notion of Haa  
basis for the Hilbert space L2(_1A ; B; _) is developed. 
(Here, (_1A ; _) denotes a one-sided topologically 
exact subshift of _nite type and _ denotes a Gibbs 
measure with support equal to _1A .) This concept 
enables us to describe in a natural way the _ltration on 
L2(_1A ; B; _) induced by the Gelfand-Na__mark-
Segal completion and the AF-structure of the C_-
algebra of complex-valued continuous functions 
de_ned on _1A . Thus, we are able to re_ne and 
develop the spectral triple of Antonescu-Ivan and 
Christensen's for an AF C_-algebra, in the setting of a 
one-sided topologically exact subshift of _nite type.   

These counting results, interesting in themselves, also 
allow us to prove new results. In particular, they allow 
us to formulate a link between the notion of measure 
theoretical entropy and the notion of a 
noncommutative volume for a one-sided topologically 
exact subshift of _nite type equipped with an 
equilibrium measure. 

To conclude the topic, we give three basic examples of 
spectral triples, examining their noncommutative 
geometries. Although most of the material in this 
section is well-known, it is often the case that many of 
the _ner details do not seem to appear in the literature. 
When this is the case we provide a full account. 
Speci_cally, we examine the noncommutative 
geometries of spectral triple representations of the 
following: the unit circle (Subsection 3.3.1), 
noncommutative tori (Subsection 3.3.2) and duals of 
countably in_nite discrete groups (Subsection 3.3.3). 
In the case of the noncommutative torus we take a 
more dynamical approach than that usually presented 
in the literature (see [Con3, V_ar, FGBV]). The 
material contained in Subsection 3.3.3 is based on 
material contained in [Con2] we focus on the case 
where E denotes a self-similar subset of R generated 
by an iterated function system of similarities S which 
satis_es the strong separation condition and where _ 
denotes a self-similar Borel probability measure on E. 
Here, we show that one can obtain a noncommutative 
integral which recovers the associated selfsimilar 
multifractal measure _. Before giving the statement of 
our result, we set the following notation 

we focus on the case where E denotes a self-similar 
subset of R generated by an iterated function system 
of similarities S which satis_es the strong separation 
condition and where _ denotes a self-similar Borel 
probability measure on E. Here, we show that one can 
obtain a noncommutative integral which recovers the 
associated selfsimilar multifractal measure _. Before 
giving the statement of our result, we set the following 
notation. 

1. Let (A;H;D) denote Connes' spectral triple for 
the set E where _ : A ! B(H) denotes the 
faithful action of A on H (note that A := 
C(E;C)). 

2. Since S satis_es the strong separation 
condition, this implies that the set E is strongly 
porous. Letting _ denote the porosity constant 
of E, for each _ > _, let Q_;_ : H ! H denote the 
bounded linear operator as in Equation (1.1). 

3. For a given limiting procedure W, let TrW 
denote the Dixmier trace with respect to W. 
Note that it is through the Dixmier trace that 
one obtains a noncommutative integral. 
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