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Abstract – Graphical algebras are both a natural and powerful way to depict intricate dependency 
structures in multivariate random variables. They come in two flavours, directed or undirected, that are not 
mutually exclusive. However, some conditional independence structures can only be encoded in one or 
the other formalism. Among graphical algebras, Gaussian Graphical algebras (often referred to as GGM) 
are of particular interest because of their ease to be manipulated and interpreted. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTRODUCTION 

A graphical algebra is a probabilistic model whose 
conditional (in)dependence structure between random 
variables is given by a graph. This framework has 
received a fair amount of attention recently, but the 
ideas can be traced back as far as the beginning of the 
XXth century with Gibbs. Indeed, one of the scientific 
areas that popularised graphical algebras is statistical 
physics. As an example, let us consider a simple 
model, named after the physicist Ernst Ising, that can 
be used to describe a large system of magnetic 
dipoles (or spins). Spins can be in one of the two 
states fø1g. They are spread on a graph (commonly a 
lattice) and can only interact with their neighbours. If ø 
= (ø1; ø2; ::: ) is a state of the system giving 
assignments for all spins, the energy of ø and the 
associated Gibbsian distribution are respectively given 
by: 

 

The graphical aspect of this model is rather obvious, 
since the definition of H depends on the 
neighbourhood of each spin. This is an example of 
undirected graphical algebra. Such models are also 
called Markov random fields. Graphical algebras also 
naturally arise for instance when designing hierarchical 
models with sequentially drawn variables. Let us 
consider a classical Bayesian framework where 
observations X are drawn according to a distribution 
with parameters ø, and where ø is itself drawn from a 
distribution with (hyper)parameters ѵ. This model can 
be depicted by a directed graph. 

 

 

Here we have an example of directed graphical model. 
The idea is that the graph indicates a way to factorise 
the joint probability distribution of all variables as a 
product of conditional probability distributions. For this 
factorisation to be possible, the graph cannot have any 
directed cycle. It has to be a directed acyclic graph 
(DAG). These models are often referred to as 
Bayesian networks or belief networks. Other classical 
examples include Markov chains and hidden Markov 
models (HMM). 

GRAPHICAL-ALGEBRAIC PROPERTIES 

There are plenty of geometric conditions on a directed 
graph E which guarantee that L(E) has a particular 
algebraic structure. For example, we will show that if E 
is finite and acyclic, then L(E) is a direct sum of matrix 
rings, and the dimension of each summand can be 
predicted. Other properties we can characterize 
\graphically" include: simplicity, primitivity, primality, 
and pure infiniteness, each of which will be introduced 
in their respective sections. Most theorems studied in 
this section will be of the form ―E has graphical 
property (X)   L(E) has algebraic property (Y)." 

Many of these properties also hold for C*-algebras. 
One point of distinction is that prime =) primitive" for 
separable C*-algebras, but not Lpa's. Another highlight 
of this section is the dichotomy of simple Lpa's: if L(E) 
is simple, then it is either locally matricial or purely 
infinite. An analogous dichotomy holds for graph C*-
algebras. 

Ideal structure 

Let L(E) be a Leavitt path algebra. Recall that an ideal 
I of L(E) is graded if I = Ln2Z I\ L(E)n, where L(E)n 
denote the homogeneous components of L(E). In this 
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section we will derive a bijection between the graded 
ideals of L(E) and certain subsets of E0, called 
hereditary saturated sets. In case E satisfies 
\Condition (K)", it turns out all ideals are graded, thus 
entailing a necessary-and-suficient graphical condition 
for simplicity of an Lpa. As a consequence of all this, 
we will be able to prove that the Jacobson radical of 
L(E) is zero, i.e. all Lpa's are semiprimitive. For C*-
algebras, the aforementioned bijection is between 
hereditary saturated sets and gauge-invariant ideals of 
Cfi(E) | ideals which are invariant under the 
gaugeaction . The remark about Condition (K) still 
holds for C*-algebras. Since all C*-algebras are 
semiprimitive, the corresponding property for Lpa's is 
more notable. All the proofs for C*-algebras are the 
same as in the Lpa case, mutatis mutandis, the only 
difierences being the application of the gauge-invariant 
uniqueness theorem versus the graded uniqueness 
theorem. Thus we only establish the results for 
Hereditary saturated sets. Let E be a directed graph. 

We define two terminologies: a set H ⊆ E0 is 

• hereditary if: whenever e ∈ E1 and s(e) ∈ H, 

then r(e) ∈ H. 

• saturated if: whenever v ∈ E0 is a nonsink 

such that r(e) ∈ H for all e ∈ s−1(v), we must 

have v ∈ H. 

Heredity can be interpreted as saying that once you 
are in H, you cannot get out. Saturation is the 
converse: if you only emit edges leading into H, then 
you must have been in H to begin with. So a hereditary 
saturated set can be thought of as being trapped in an 
exclusive zombie night club | if all your friends are in, 
the bouncers will let you in too; however, once you're 
in you will never escape.  

Example. Consider the following graph: 

 

The set fv;wg is hereditary and saturated; note that u 
has an outneighbor in fv;wg, but not all outneighbors 
are in fv;wg, so the saturation condition does not fail at 
u. The set fug is saturated but not hereditary, the set 
fwg is hereditary but not saturated, and the set fu;wg is 
neither hereditary nor saturated. Punchline: 
\hereditary" and \saturated" are mutually exclusive 
conditions. Hereditary sets are important because they 
generate subgraphs (see 1.2.4): if H is hereditary, we 
define a subgraph E n H, called the complementary 
subgraph, by deleting H and all edges leading into it. 

E \ H := E0 \ H, r−1(E0 \ H), r, s 

Since any edge of E \ H must end outside H, it must 
also start outside H by heredity. So E\H is indeed a 
subgraph in the sense of 1.2.4. 

Example. In the graph of the previous example, we 
have the following subgraphs obtained by removing 
the sets {w} and {v, w}. 

 

3.1.2 Ideals → hereditary saturated sets. Now we will 
begin to correspond ideals to hereditary saturated sets 
of vertices. For an ideal I of L(E), consider the set I ∩ 

E0 = {v ∈ E0 : v ∈ I}. 

Proposition. Let I be an ideal. Then I ∩ E0 is hereditary 
and saturated. 

Proof. For heredity, suppose e is an edge with s(e) 
∈ I. r(e) = e∗e = e∗s(e)e ∈ I so I ∩ E0 is hereditary. 
For saturation, suppose v is a nonsink such that r(e) 

∈ I whenever s(e) = v. We must check v ∈ I. Indeed, 
by (CK2) we have 

 

This is row finite since E is, so we can form the 
Leavitt path algebra L(EI) over  the same field. As we 
will now show, there is a nice CK EI-family in the 
quotient Algebra L(E)/I. 

Corollary. The map L(EI ) ! L(E)=I given by e 7! e + I 
and v 7! v + I induces a surjective algebra 
homomorphism. Consequently, L(EI ) ' L(E)=I if one 
of the following conditions holds: 

(i) EI satisfies Condition (L); or 

(ii) I is graded. 

We'll see later that (i) implies (ii). 

Proof. Let x 7! x denote passage to the quotient 
L(E)=I; first we check that fege2EI , fvgv2EI satisfy 
the CK relations. (CK1) is automatic: efie = r(e) since 
the preimages satisfy (CK1) in L(E). For (CK2), note 
that if v is a nonsink in EI then it is a nonsink in E, so 
(CK2) in E implies 
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which is (CK2) in EI . Therefore fege2EI , fvgv2EI 
satisfy the CK relations, and so by the universal 
property of L(EI ) there is an algebra homomorphism ' : 
L(EI ) ! L(E)=I sending e 7! e and v 7! v. This is 
surjective since this CK EI-family clearly generates 
L(E)=I. 

Note that if v 2 EI , then v =2 H and so v 6= 0. Thus if 
EI has Condition (L) then ' is an isomorphism by the 
Cuntz{Krieger Uniqueness Theorem; if I is graded then 
' is a graded homomorphism, hence injective by the 
Graded Uniqueness Theorem. As required. So I ∩ E0 
is saturated. 

Hereditary saturated sets $ ideals. Now we complete 
the correspondence between hereditary saturated sets 
and ideals. If H fi E0 is a hereditary saturated set, we 
correspond it to an ideal I of L(E) in the naive way, 
which turns out to work: simply let I be the ideal 
generated by H. 

 

Since this is generated by homogeneous elements, in 
fact I is a graded ideal. It turns out that this is the 
unique graded ideal with I \ E0 = H 

Simplicity. 

Now it is because R = k[x, x−1]  r(ei) = s(ei+1) fails 
Condition (L) as a Leavitt path algebra. We can give 
graphical conditions characterizing when an Lpa is 
simple but we have to introduce some graph-theoretic 
terminology. First, an infinite path in a directed graph E 
is a sequence of edges µ = e1e2e3 · · · such 
R = k[x, x−1]for all i; we denote by E1 the set of infinite 
paths in E. We say E is cofinal if, for all R = e 
k[x, x−1]2 E1, all sinks w 2 E0 and all vertices v 2 E0, 
there are paths µ = 1e2e3 · · · and 
R = k[x, x−1]Succinctly, this means any vertex in E can 
reach any infinite path and any sink; in particular every 
vertex can reach every cycleR = k[x, x−1]because 
R = k[x, x−1]is an µ = e1e2e3 · · · nite path clear that 
E has no nontrivial hereditary saturated sets if and 
only if R = k[x, x−1]is graded-simple, i.e. has no 
nontrivial graded ideals. For example R = k[x, x−1]is 
graded-simple, which can be seen either directly or 
from its structure as a Leavitt path algebra. But it is not 
simple, because e.g. 1 − x)R  is a proper nonzero 
ideal; we will see that this is  

 

If E is finite, the only infinite paths are ones containing 
cycles | so in this case, cofinality is equivalent to 

saying that any vertex can reach any cycle and any 
sink. Clearly, then, a cofinal graph has at most one 
sink: if it has two sinks, they can't reach other. The 
following fact reveals the importance of cofinality: 
essentially E is cofinal if and only if L(E) is graded-
simple. 

Prime and primitive ideals 

The section is structured as follows: first we 
investigate prime and primitive Lpa's, then prime and 
primitive C*-algebras. For each, we can find graphical 
conditions to determine which graded ideals are prime 
and/or primitive. We will see that Cfi(E) is prime if and 
only if it is primitive, if and only if L(E) is primitive | but 
it is possible for L(E) to be prime while Cfi(E) is not. 
This will be our first example of an Lpa property which 
does not perfectly reect C*-algebras.  

Prime rings.  

Let R be a ring. An ideal P of R is prime if, whenever I; 
J are ideals with IJ fi P, either I fi P or J fi P. It is 
equivalent to require that for all x; y 2 R, xRy fi P 
implies x 2 P or y 2 P (see Proposition 10.2 in [15]). R 
is a prime ring if f0g is a prime ideal; that is, if x; y 2 R 
and xry = 0 for all r 2 R, then either x = 0 or y = 0. If R 
is commutative and unital, this reduces to the condition 
that R has no zero divisors, i.e. R is an integral 
domain. For noncommutative rings it is sufficient but 
not necessary that R has no zero divisors, e.g. Mn(C) 
is a prime ring with many zero divisors. We now 
investigate prime Leavitt path algebras. Proposition. 
Let L(E) be a Leavitt path algebra. Then L(E) is a 
prime ring if and only if E is downward directed: that is, 
for all vertices v;w 2 E0, there exists x 2 E0 such that v 
! x and w ! x. Recall that \v ! w" just means that there is 
a path fi from v to w, i.e. s(fi) = v and r(fi) = w. 

Let R be a ring. If M is a right R-module, its kernel (or 
annihilator) is the two-sided ideal kerM := fr 2 R : Mr = 
0g. A proper ideal P of R is (right) primitive if P = kerM 
for some nonzero, simple right R-module M. If f0g is a 
primitive ideal we say that R is a (right) primitive ring; 
equivalently, R admits a faithful simple right R-module. 
Thus an ideal P is primitive if and only if R=P is a 
primitive ring. We note that in commutative rings, the 
only primitive rings are _elds, and the primitive ideals 
are the maximal ideals. Here is a standard fact. 
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