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Abstract – The research reported in this paper explores the nature of student knowledge about group 
theory, arid how an individual may develop an understanding of certain topics in this domain. As part of a 
long-term research and development project in learning and teaching undergraduate mathematics, this 
report is one of a series of papers oil the abstract algebra component of that project. 

We end the paper with a brief discussion of some pedagogical suggestions arising out of our 
considerations. We defer, however, a full consideration of instructional strategies and their effects oil 
learning these topics to some future time when more extensive research can provide a more solid 
foundation for the design of specific pedagogies. 

---------------------------♦----------------------------- 

INTRODUCTION 

Most lectures on group theory actually start with the 
definition of what is a group. It may be worth though 
spending a few lines to mention how mathematicians 
came up with such a concept. 

Around 1770, Lagrange initiated the study of 
permutations in connection with the study of the 
solution of equations. He was interested in 
understanding solutions of polynomials in several 
variables, and got this idea to study the behavior of 
polynomials when their roots are permuted. This led to 
what we now call Lagrange‘s Theorem. If a function 
f(x1, . . . , xn) of n variables is acted on by all n! 
possible permutations of the variables and these 
permuted functions take on only r values, then r is a 
divisior of n!. It is Galois (1811-1832) who is 
considered by many as the founder of group theory. 

He was the first to use the term ―group‖ in a technical 
sense, though to him it meant a collection of 
permutations closed under multiplication. Galois theory 
will be discussed much later in these notes. Galois 
was also motivated by the solvability of polynomial 
equations of degree n. From 1815 to 1844, Cauchy 
started to look at permutations as an autonomous 
subject, and introduced the concept of permutations 
generated by certain elements, as well as several 
notations still used today, such as the cyclic notation 
for permutations, the product of permutations, or the 
identity permutation. He proved what we call today 
Cauchy‘s Theorem, namely that if p is prime divisor of 
the cardinality of the group, then there exists a 
subgroup of cardinality p. In 1870, Jordan gathered all 

the applications of permutations he could find, from 
algebraic geometry, number theory, function theory, 
and gave a unified presentation (including the work of 
Cauchy and Galois). Jordan made explicit the notions 
of homomorphism, isomorphism (still for permutation 
groups), he introduced solvable groups, and proved 
that the indices in two composition series are the same 
(now called Jordan-H¨older Theorem). He also gave a 
proof that the alternating group An is simple for n > 4. 

Apart permutation groups and number theory, a third 
occurence of group theory which is worth mentioning 
arose from geometry, and the work of Klein (we now 
use the term Klein group for one of the groups of order 
4), and Lie, who studied transformation groups, that is 
transformations of geometric objects. 

The work by Lie is now a topic of study in itself, but Lie 
theory is beyond the scope of these notes. 

The abstract point of view in group theory emerged 
slowly. It took something like one hundred years from 
Lagrange‘s work of 1770 for the abstract group concept 
to evolve. This was done by abstracting what was in 
commun to permutation groups, abelian groups, 
transformation groups... In 1854, Cayley gave the 
modern definition of group for the first time: 

―A set of symbols all of them different, and such that the 
product of any two of them (no matter in what order), or 
the product of any one of them into itself, belongs to the 
set, is said to be a group. These symbols are not in 
general convertible [commutative], but are associative.‖ 
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In this| paper we hope to open a discussion 
concerning the nature of knowledge about abstract 
algebra, in particular group theory, and how an 
individual may develop an understanding of various 
topics in this domain. Our goal in making such a study 
is to eventually contribute to basic knowledge about 
human thinking as well as to 
serve the purposes of this specific area of 
mathematics. One way to do this is to introduce an 
increased degree of specificity to an analysis of 
student difficulties in understanding abstract concepts. 
Our present emphasis will be on interpreting the 
struggles of a class of in-service high school 
mathematics teachers as they tried to make sense out 
of a number of topics in group theory. 

Of course, we are also interested in using these and 
other observations in the development of pedagogical 
strategies that can improve student success in 
learning abstract algebra. The work reported here is 
part of a long term research and development project 
in learning and teaching undergraduate mathematics. 

We include, at the end, a brief discussion of some 
pedagogical suggestions arising out of our 
observations, but a full consideration of instructional 
strategies arid their effect 011 learning this subject 
must await future investigations yet to be conducted. 
Nevertheless, we offer the current discussion as an 
opening to what we hope becomes 
a continuing investigation of this important area. 

Why Group Theory? 

Abstract algebra in general, and group theory in 
particular, presents a serious educational problem. 
Mathematics faculty and students generally consider it 
to be one of the most troublesome undergraduate 
subjects. It appears to give students a great deal of 
difficulty, both in terms of dealing with the content and 
the development of attitudes towards abstract 
mathematics. The literature contains some reports that 
support this judgement, such as Hart, in press and 
Selden & Selden, 1987. 

In many colleges, abstract algebra is the first course 
for students in which they must go beyond learning 
―imitative behavior patterns‖ for mimicing the solution 
of a large number of variations on a small number of 
themes (problems). In such a course, students must 
come to grips with abstract concepts, work with 
important mathematical principles, and learn to write 
proofs. Although there are no formal 
studies, many students report that, after taking this 
course, they tended to turn off from abstract 
mathematics. Since a significant percentage of the 
student audience for abstract algebra consists of 
future mathematics teachers, it is particularly important 
that the profession of mathematics education develop 
effective pedagogical strategies for improving the 
attitude of high school mathematics teachers towards 
mathematical abstraction. 

There is another reason, related to abstraction, for the 
importance of abstract algebra in general and quotient 
groups in particular. An individual‘s knowledge of the 
concept of group should include an understanding of 
various mathematical properties and constructions 
independent of particular examples, indeed including 
groups consisting of undefined elements and a binary 
operation satisfying the axioms. 

Even if one begins with a very concrete group, the 
transition from the group to one of its quotients 
changes the nature of the elements and forces a 
student to deal with elements (e.g., cosets) that are, 
for her or him, undefined. This relationship between 
abstract groups and quotient groups has important 
historical antecedents (Nicholson, 
2003). 

GROUP AND SUBGROUP 

In this section we suggest that an individual‘s 
development of the concepts of group and subgroup 
may be synthesized simultaneously. Our observations 
are consistent with a progression in understanding that 
moves through various intermediate (and incomplete) 
ways of understanding groups and subgroups. That 
understanding 
may move from seeing groups and subgroups as 
primarily sets of discrete elements, to a stage where the 
operations as well as the group elements are 
incorporated into the necessary definition. Finally, a 
student may construct a thorough understanding of a 
group as an object to which actions can be applied. 

It appears possible that some students try to deal with 
problem situations involving a set and an operation by 
assimilating the situations to an existing set schema, 
ignoring the operation which is also present. We 
suggest that such a strategy may represent an early 
misconception of the concepts of group and subgroup. 

Groups as sets- 

In the very first phase of learning the group concept, a 
student may interpret a group primarily in terms of its 
elements, that is, as a set. If the individual remains at 
this elementary understanding of groups, he or she may 
not distinguish a group by anything more than the 
number of elements in it. 

One example of a student‘s response which may 
indicate a strong emphasis on groups as sets of 
elements occurred when Kim was asked if Z(i were 
isomorphic to a S3?

2
 Kim says the following : 

Kim: Probably so, S3 has 6 elements in it and Z6 has 6 
elements in it, so without going through the whole 
procedure, 1 would say yes. 

In addition to confusion about isomorphism, this 
student‘s understanding seems to emphasize the 
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number of elements as a characterizing feature of a 
group. 

Thus, it may be that Z3 is considered to be any set with 
three elements that is known to be a group. For 
example, in the written assessment and the interview, 
another student, Cal, variously considers Z3 to be the 
set {0,1, 2}, {1, 2, 3}, {0, 2, 3}, or {0,2,4}. 

Also consider Sue who answered Question 1(b) (on| 
subgroups of Z6 on the written assessment, specifying 
a group by its elements; she wrote {10} for a subgroup 
of Z6 with two elements and {2 10} for a subgroup of Z6 
with three elements. 

At the earliest stages of understanding groups, the 
students may construct their own idea of group by 
considering familiar objects (elements of the group) 
and forming a process of associating these objects 
with each other in a set. Eventually, the students may 
encapsulate that process into an object which, for 
them, represents the group in question. 

Subgroup as a subset- 

Understanding a subgroup as a subset is similar to 
understanding a group as a set. For a student at this 
stage, sometimes ―being a subset‖, that is, having all 
its elements included in a bigger set, is sufficient to 
conclude the existence of a subgroup. In other cases 
students require that such subsets of elements share a 
common property. 

In looking for subgroups of D3, many students correctly 
mentioned the ―rotations‖. Similarly, but incorrectly, 
some listed ―the flips‖ as a subgroup. Consider for 
example Cal who, in responding to Question 2(a) of 
the written assessment, listed the elements of D3 as 
{R0,R1,R2,D1,D2,D3} and identified the first three as the 
rotations and the second three as the flips. Then in 
responding to Question 
2(c) he listed {R0,R1,R2} as a subgroup of DA 
isomorphic to Z3 and in responding to Question 2(d) he 
listed {D1,D2,D3} as a subgroup of D3 also isomorphic 
to Z3. In all cases, he mentions the correct operation. 
Here is what happens when the interviewer asks Cal 
about his choice of {D1,D2,D3} as a subgroup 

I: And what about this out' here? You want it 
isomorphic t o Z3. What vou write he is {D1,D2,D3}. 

Cal: Yeah. I thought if you do them all... 

I: The three flips. 

Cal: Right. 

I: You think it‘s a subgroup. 

Cal: Well, like' you told me you have to have the same 
operation, it works on it the same as addition. 

I: Well, that‘s not the point because it has to be a 
subgroup of this D3. But is it a group at all under 
composition? 

Cal: I thought it was. I didn‘t see anything that...I 
thought it was closed. 

Individuals who have not progressed beyond this point 
would probably have no difficulty in considering the 
even integers to be a subgroup of Z. but they might 
also think that the odd integers were a subgroup as 
well. 

This demonstrates a misconception caused by some 
students‘ efforts to construct a new concept (group) by 
relating it to a familiar concept (set). This is an example 
of reequilibration by assimilating the situation to existing 
available schemas before those schemas have been 
reconstructed to achieve a higher level of 
sophistication. It may happen that a student leaps over 
this step, or passes through it very quickly. 
But nevertheless, as we witnessed above, some 
students exhibited vestiges of this misconception after 
five weeks (approximately 50 contact hours) of 
instruction in group theory. 

ISOMORPHISM THEOREMS 

The following theorems are useful in the classification 
of quotient groups of a given group G, or (vice versa) its 
normal subgroups. 

Homomorphism Theorem. If is a 
homomorphism, then 

 

Proof. Set . We know . Define the map 

 

The following proves the maps is well defined and 

injective : 

 

is trivially surjective (by construction), and it is a 
homomorphism because 
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Corollary. If is a monomorphism, 

then  

This is a straightforward consequence of the above 
theorem. We also achieve a classification of all cyclic 
groups: 

Theorem. Every cyclic group of order  is 

isomorphic to , and every infinite cyclic group is 

isomorphic to  

Proof. Let  be cyclic. We have 

. The map  

defines an epimorphism, with kernel  and  or 

the smallest positive integer such that , i.e., 

 . The homomorphism theorem 

implies that  if G is infinite and 

otherwise  with • 

First Isomorphism Theorem- 

Let Then  

and  

Proof. Since N is normal,  for all  So 

 and by Theorem HN is a 

subgroup. Note that  and consider the re-
striction of the canonical epimorphism 

 to  which we denote by 

 For the image, 

 

Recall N is the identity in ,  and  if and only 

if  So  

Therefore  is normal, and the isomorphism 
follows from the homomorphism theorem (take ). 

Second Isomorphism Theorem- 

Let  Then  and 

 

Proof. Let  We have 

 so the map 

is well defined. Evidently, is a homomorphism, with 

image  and kernel 

 

The theorem now follows from the homomorphism 
theorem. 

THE SYLOW THEOREMS 

We look at orders of groups again, but this time paying 
attention to the occurrence of prime factors. More 
precisely, we will fix a given prime p, look at the partial 
factorization of the group order n as n = p

r
m where p 

does not divide m, and study the existence of 
subgroups of order p or a power of p. In a sense, this 
is trying to establish some kind of converse for 
Lagrange‘s Theorem. Recall that Lagrange‘s Theorem 
tells that the order of a subgroup divides the order of 
the group. Here we conversely pick a divisor of the 
order of the group, and we try to find a subgroup with 
order the chosen divisor. 

Definition. Let p be a prime. The group G is said to be a 
p-group if the 

order of each element of G is a power of p. 

Examples. We have already encountered several 2-
groups. 

1. We have seen in Example 1.15 that the cyclic group 
C4 has elements of order 1,2 and 4, while the direct 
product C2 × C2 has elements of order 1 and 2. 

2. The dihedral group D4 is also a 2-group. 

Definition. If |G| = p
r
m, where p does not divide m, then 

a subgroup P of order p
r
 is called a Sylow p-subgroup 

of G. Thus P is a p-subgroup of G of maximum possible 
size. 

The first thing we need to check is that such a subgroup 
of order pr indeed exists, which is not obvious. This will 
be the content of the first Sylow theorem. 

Once we have proven the existence of a subgroup of 
order p

r
, it has to be a p-group, since by Lagrange‘s 

Theorem the order of each element must divide p
r
. We 

need a preliminary lemma. 

Lemma. If where p is prime, thenmod p. Thus if 

p does not divide m, then p does not divide  

Proof. We have to prove that 

 

after which we have that if p does not divide m, 

the mod p implying that mod p and 

thus p does not divide  
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Let us use the binomial expansion of the following 
polynomial 

 

where we noted that all binomial coefficients but the 
first and the last are divisible by p. Thus 

 

which we can expand again into 

 

We now look at the coefficient of on both sides: 

• on the left, take , to get , 

• on the right, take , to get  

The result follows by identifying the coefficients of  
We are ready to prove the first Sylow Theorem. 

Theorem. (1st Sylow Theorem). Let G be a finite 
group of order p

r
m, p a prime such that p does not 

divide m, and r some positive integer. Then G has at 
least one Sylow p-subgroup. 

Proof. The idea of the proof is to actually exhibit a 

subgroup of G of order  For that, we need to define 
a clever action of G on a carefully chosen set X. Take 
the set 

 

and for action that G acts on X by left multiplication. 
This is clearly a well- defined action. We have that 

 

which is not divisible by p (by the previous lemma). 
Recall that the action of G on X induces a partition of X 

into orbits:  

where the disjoint union is taken over a set of 
representatives. Be careful that here S is an element 

of X, that is S is a subset of size . We get 

 

and since p does not divide  it does not divide 

 meaning that there is at least one S for which 

p does not divide . Let us pick this S, and denote 
by P its stabilizer. 

The subgroup P which is thus by choice the stabilizer 

of the subset  of size whose orbit size is not 
divisible by p is our candidate: we will prove it has 

order  

Let us use the Orbit-Stabilizer Theorem, 
which tells us that 

 

By choice of the S we picked, p does not divide  

that is p does not divide  and  has to be a 

multiple of  or equivalently divides  

Let us define the map  by 

 

In words, this map goes from P, which is a subgroup of 
G, to S, which is an element of X, that is a subset of G 

with cardinality Note that this map is well-defined 

since for any and any by definition of 
P being the stabilizer of S. It is also clearly injective (gx 
= hx implies g = h since x is an element of the group G 
and thus is invertible). If we have an injection from P to 

5, that means  

PEDAGOGICAL SUGGESTIONS 

For many students, their early mathematical career 
consists of learning algorithms to solve repetitive 
problems. With abstract algebra, the abrupt change in 
mathematical style from learning algorithms to 
understanding concepts and the overall complexity of 
the subject imply that this course, above all, is not likely 
to succeed if taught in a traditional manner. Indeed, it 
may be the case that abstract algebra is not very 
successful at most universities. Although there are no 
studies, anecdotal evidence tends to support this 
supposition. Thus, we have a situation in which it may 
be important to consider alternative, innovative 
instructional strategies. 
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