
 

 

 

Vijay Singh Digamber Gaikwad* 
 
 

w
w

w
.i

gn
it

e
d

.i
n

 

217 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 13, Issue No. 2, July-2017, ISSN 2230-7540 

 

An Analysis upon Basic Fundamental 
Application of Ring Theory 

 

Vijay Singh Digamber Gaikwad* 

Assistant Professor 

Abstract – Ring theory is one of the branches of the abstract algebra that has been broadly used in 
images. However, ring theory has not been very related with image segmentation. In this paper, we 
propose a new index of similarity among images using __ rings and the entropy function. This new index 
was applied as a new stopping criterion to the Mean Shift Iterative Algorithm with the goal to reach a 
better segmentation. An analysis on the performance of the algorithm with this new stopping criterion is 
carried out. Whereas ring theory and category theory initially followed different directions it turned out in 
the 1970s – that the study of functor categories also reveals new aspects for module theory. 

In our presentation many of the results obtained this way are achieved by purely module theoretic 
methods avoiding the detour via abstract category theory. 

---------------------------♦----------------------------- 

INTRODUCTION 

In mathematics, a ring is an algebraic structure 
consisting of a set together with two binary operations 
usually called addition and multiplication, where the 
set is an abelian group under addition (called the 
additive group of the ring) and a monoid under 
multiplication such that multiplication distributes over 
addition. In other words the ring axioms require that 
addition is commutative, addition and multiplication 
are associative, multiplication distributes over 
addition, each element in the set has an additive 
inverse, and there exists an additive identity. One of 
the most common examples of a ring is the set of 
integers endowed with its natural operations of 
addition and multiplication. Certain variations of the 
definition of a ring are sometimes employed, and 
these are outlined later in the article. 

The branch of mathematics that studies rings is 
known as ring theory. Ring theorists study properties 
common to both familiar mathematical structures 
such as integers and polynomials, and to the many 
less well-known mathematical structures that also 
satisfy the axioms of ring theory. The ubiquity of rings 
makes them a central organizing principle of 
contemporary mathematics. 

Ring theory may be used to understand fundamental 
physical laws, such as those underlying special 
relativity and symmetry phenomena in molecular 
chemistry. 

The concept of a ring first arose from attempts to 
prove Fermat's last theorem, starting with Richard 
Dedekind in the 1880s. After contributions from other 
fields, mainly number theory, the ring notion was 
generalized and firmly established during the 1920s by 
Emmy Noether and Wolfgang Krull. Modern ring 
theory—a very active mathematical discipline—studies 
rings in their own right. To explore rings, 
mathematicians have devised various notions to break 
rings into smaller, better-understandable pieces, such 
as ideals, quotient rings and simple rings. In addition 
to these abstract properties, ring theorists also make 
various distinctions between the theory of 
commutative rings and noncommutative rings—the 
former belonging to algebraic number theory and 
algebraic geometry. A particularly rich theory has been 
developed for a certain special class of commutative 
rings, known as fields, which lies within the realm of 
field theory. Likewise, the corresponding theory for 
noncommutative rings, that of noncommutative 
division rings, constitutes an active research interest 
for noncommutative ring theorists. Since the discovery 
of a mysterious connection between noncommutative 
ring theory and geometry during the 1980s by Alain 
Connes, noncommutative geometry has become a 
particularly active discipline in ring theory. 

A ring will be defined as an abstract structure with a 
commutative addition, and a multiplication which may 
or may not be commutative. This distinction yields two 
quite different theories: the theory of respectively 
commutative or non-commutative rings. These notes 
are mainly concerned about commutative rings. 
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Non-commutative rings have been an object of 
systematic study only quite recently, during the 20th 
century. Commutative rings on the contrary have 
appeared though in a hidden way much before, and 
as many theories, it all goes back to Fermat‘s Last 
Theorem. 

In 1847, the mathematician Lam´e announced a 
solution of Fermat‘s Last Theorem, but Liouville 
noticed that the proof depended on a unique 
decomposition into primes, which he thought was 
unlikely to be true. Though Cauchy supported Lam´e, 
Kummer was the one who finally published an 
example in 1844 to show that the uniqueness of 
prime decompositions failed. Two years later, he 
restored the uniqueness by introducing what he 
called ―ideal complex numbers‖ (today, simply 
―ideals‖) and used it to prove Fermat‘s Last Theorem 
for all n < 100 except n = 37, 59, 67 and 74. 

It is Dedekind who extracted the important properties 
of ―ideal numbers‖, defined an ―ideal‖ by its modern 
properties: namely that of being a subgroup which is 
closed under multiplication by any ring element. He 
further introduced prime ideals as a generalization of 
prime numbers. Note that today we still use the 
terminology ―Dedekind rings‖ to describe rings which 
have in particular a good behavior with respect to 
factorization of prime ideals. In 1882, an important 
paper by Dedekind and Weber developed the theory 
of rings of polynomials. 

At this stage, both rings of polynomials and rings of 
numbers (rings appearing in the context of Fermat‘s 
Last Theorem, such as what we call now the 
Gaussian integers) were being studied. But it was 
separately, and no one made connection between 
these two topics. Dedekind also introduced the term 
―field‖ (K¨orper) for a commutative ring in which every 
non-zero element has a multiplicative inverse but the 
word ―ring‖ is due to Hilbert, who, motivated by 
studying invariant theory, studied ideals in polynomial 
rings proving his famous ―Basis Theorem‖ in 1893. 

It will take another 30 years and the work of Emmy 
Noether and Krull to see the development of axioms 
for rings. Emmy Noether, about 1921, is the one who 
made the important step of bringing the two theories 
of rings of polynomials and rings of numbers under a 
single theory of abstract commutative rings. 

In contrast to commutative ring theory, which grew 
from number theory, non-commutative ring theory 
developed from an idea of Hamilton, who attempted 
to generalize the complex numbers as a two 
dimensional algebra over the reals to a three 
dimensional algebra. Hamilton, who introduced the 
idea of a vector space, found inspiration in 1843, 
when he understood that the generalization was not 
to three dimensions but to four dimensions and that 
the price to pay was to give up the commutativity of 

multiplication. The quaternion algebra, as Hamilton 
called it, launched non-commutative ring theory. 

A ring is a set A with two binary operations satisfying 
the rules given below. Usually one binary operation is 
denoted `+' and called \addition," and the other is 
denoted by juxtaposition and is called \multiplication." 
The rules required of these operations are: 

1) A is an abelian group under the operation + 
(identity denoted 0 and inverse of x denoted 
−x); 

2) A is a monoid under the operation of 
multiplication (i.e., multiplication is associative 
and there is a two-sided identity usually 
denoted 1); 

3) the distributive laws 

(x + y)z = xy + xz 

x(y + z) = xy + xz 

hold for all x, y, and z  A. 

Sometimes one does not require that a ring have a 
multiplicative identity. The word ring may also be used 
for a system satisfying just conditions (1) and (3) (i.e., 
where the associative law for multiplication may fail 
and for which there is no multiplicative identity.) Lie 
rings are examples of non-associative rings without 
identities. Almost all interesting associative rings do 
have identities. 

If 1 = 0, then the ring consists of one element 0; 
otherwise 1 ≠ 0. In many theorems, it is necessary to 
specify that rings under consideration are not trivial, 
i.e. that 1 ≠ 0, but often that hypothesis will not be 
stated explicitly. 

If the multiplicative operation is commutative, we call 
the ring commutative. Commutative Algebra is the 
study of commutative rings and related structures. It is 
closely related to algebraic number theory and 
algebraic geometry. 

If A is a ring, an element x  A is called a unit if it has 
a two-sided inverse y, i.e. xy = yx = 1. Clearly the 
inverse of a unit is also a unit, and it is not hard to see 
that the product of two units is a unit. Thus, the set 
U(A) of all units in A is a group under multiplication. 
(U(A) is also commonly denoted A

*
.) If every nonzero 

element of A is a unit, then A is called a division ring 
(also a skew field.) A commutative division ring is 
called a field. 

Examples: 

1. Z is a commutative ring.  
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2. The group  becomes a commutative ring 
where multiplication is multiplication mod 

n.  consists of all cosets where i 
is relatively prime to n. 

3. Let F be a field, e.g., F = R or C. 

Let denote the set of n by n matrices with 
entries in F. Add matrices by adding 
corresponding entries. Multiply matrices by the 
usual rule for matrix multiplication. The result 
is a non-commutative 

ring. = the group of 
invertible n by n matrices. 

4. Let M be any abelian group, and let End(M) 
denote the set of endomorphisms of M into 

itself. For , define addition by 

 and define 
multiplication as composition of functions. 
(Note: If M were not abelian we could still 
define composition because the composition 
of two endomorphisms is an endomorphism. 
However, it would not necessarily be true that 
the sum of two endomorphisms would be an 
endomorphism. Check this for yourself.) 

If A is a ring, a subset B of A is called a subring if it is 
a subgroup under addition, closed under 
multiplication, and contains the identity. (If A or B 
does not have an identity, the third requirement would 
be dropped.) 

Examples: 

1) does not have any proper subrings. 

2) The set of all diagonal matrices is a subring 

of  

3) The set of all n by n matrices which are zero in 
the last row and the last column is closed 
under addition and multiplication, and in fact it 
is a ring in its own right (isomorphic 

to  However, it is not a subring since 
its identity does not agree with the identity of 
the over ring .  

A function where A and B are rings is called a 
homomorphism of rings if it is a homomorphism of 
additive groups, it preserves products: 

 for all  and finally it preserves 

the identity:  

Examples: The canonical epimorphism  is 
a ring homomorphism. However, the inclusion of 

 in  as suggested in example 3) above 
is not a ring homomorphism. 

A subset a is called a left ideal of A if it is an additive 

subgroup and in addition whenever  

and  If we require instead that  then a 

is called a right ideal. Finally, is called a two-sided 
ideal if it is both a left ideal and a right ideal. Of 
course, for a commutative ring all these notions are 
the same. 

BASIC NOTIONS 

A ring is defined as a non-empty set R with two 

compositions  with the properties: 

(i)  is an abelian group (zero element 0); 

(ii)  is a semigroup; 

(iii)  for all  the distributivity laws are 
valid: 

 

The ring R is called commutative if  is a 

commutative semigroup, i.e. if for 

all In case the composition is not necessarily 
associative we will talk about a non-associative ring. 

An element  is a left unit if  for all 

 Similarly a right unit is defined. An element 
which is both a left and right unit is called a unit (also 
unity, identity) of R. 

In the sequel R will always denote a ring. In this 
chapter we will not generally demand the existence of 

a unit in R but assume  

The symbol 0 will also denote the subset  

RINGS, IDEALS AND HOMOMORPHISMS 

Definition 1. A ring R is an abelian group with a 

multiplication operation  which is 
associative, and satisfies the distributive laws 

 

with identity element 1. 

There is a group structure with the addition operation, 
but not necessarily with the multiplication operation. 
Thus an element of a ring may or may not be invertible 
with respect to the multiplication operation. Here is the 
terminology used. 
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Definition 2. Let a,6 be in a ring R. If  and  

but then we say that a and b are zero divisors. 

If , we say that a is a unit or that a is 
invertible. 

While the addition operation is commutative, it may or 
not be the case with the multiplication operation. 

Definition 3. Let R be ring. If  for any a, b in R, 
then R is said to be commutative. 

Here are the definitions of two particular kinds of 
rings where the multiplication operation behaves well. 

Definition 4. An integral domain is a commutative ring 
with no zero divisor. A division ring or skew field is a 
ring in which every non-zero element a has an 

inverse  

Let us give two more definitions and then we will 
discuss several examples. 

Definition 5. The characteristic of a ring R, denoted 
by char#, is the smallest positive integer such that 

 

We can also extract smaller rings from a given ring. 

Definition 6. A subring of a ring R is a subset 5 of R 
that forms a ring under the operations of addition and 
multiplication defined in R. 

Definition 7. Let R. S be two rings. A map 

 satisfying 

1.  (this is thus a group 
homomorphism) 

2.  

3.  for a,b G R is called ring 
homomorphism. 

The notion of ―ideal number‖ was introduced by the 
mathematician Kum- mer, as being some special 
―numbers‖ (well, nowadays we call them groups) 
having the property of unique factorization, even 
when considered over more general rings than (a bit 
of algebraic number theory would be good to make 
this more precise). Today only the name ―ideal‖ is left, 
and here is what it gives in modern terminology: 

Definition 8. Let be a subset of a ring R. Then an 
additive subgroup of R having the property that 

 is called a left ideal of R. If 

instead we have  

we say that we have a right ideal of R. If an ideal 
happens to be both a right and a left ideal, then we 
call it a two-sided ideal of #, or simply an ideal of R. 

Of course, for any ring #, both R and  are ideals. 
We thus introduce some terminology to precise 
whether we consider these two trivial ideals. 

Definition 9. We say that an ideal  of R is proper if 

 We say that is it non-trivial if  and  

If  is a ring homomorphism, we define the 

kernel of  in the most natural way: 

 

Since a ring homomorphism is in particular a group 

homomorphism, we already know that  is injective if 

and only if  It is easy to check that  
is a proper two-sided ideal: 

•  is an additive subgroup of R. 

• Take  and   Then 

 and  

showing that and ar are in  

• Then  has to be proper (that is, 

), since by definition.  

THE CHINESE REMAINDER THEOREM 

The multiplication of additive subgroups of A satisfies 
the associative and distributive laws: 

 

Moreover, it is not hard to see that if a is a left ideal 
then ab is also a left ideal. Similarly, if b is a right ideal 
then ab is a right ideal. In particular, if a is a left ideal 
and b is a right ideal, then ab is a two-sided ideal. 

Note that in the above formulas, we have used the 
sum a + b of two additive subgroups of A. (Since as 
additive group, A is abelian, the subgroup a + b in fact 

consists of all sums  where  and ) 
If a and b are left (right, two-sided) ideals then a + b is 
a left (right, two-sided) ideal, the smallest such 
containing a and b. Similarly, we can form the 
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intersection of 2 left (right, two-sided) ideals, and 
the result is again a left (right, two-sided) ideal. More 
generally, any arbitrary intersection of left (right, two-
sided) ideals is again a left (right, two-sided) ideal: in 
fact the largest left (right, two-sided) ideal contained 
in all the ideals. 

Note that if a and b are two-sided ideals, then so is 

ab and in addition  

Let A and B be rings. We can form the additive group 

, and we can define a multiplication operation 
on it by 

 

It is straightforward to check that  becomes
 a ring with this operation. It is called the direct 
product ring. Consider the subgroup 

. A simple calculation 
shows that it is closed under either left or right 

multiplication by arbitrary elements of  so it is 
a two-sided ideal. In fact, it is the kernel of the map 

 defined by  (That map is 

clearly a ring epimorphism.) Similarly,  is a 
two-sided ideal in A, the kernel of the projection 

 The Chinese Remainder theorem gives 
us a way of dissecting a ring into a direct product 
under appropriate circumstances. 

THEOREM. (Chinese Remainder Theorem) Let A be 

a ring, and suppose  are two-sided 
ideals in A such that 

 

Then 

 

Note: The property  for two sided ideals is 
called comaximality. 

Proof. Let  be the canonical 
epimorphism, and define 

. Clearly,  
is a ring homomorphism, and 

 

The theorem will follow from the first isomorphism 
theorem if we can show that p is an epimorphism. 

Let be the element  which is 0 at all 
components except the ith where it is one. 

It clearly suffices to show that  for some 

 for each  (For, in that

 case  and clearly the 
direct product is generated by elements of this form.) 

RING THEORY IN THE SEGMENTATION OF 
DIGITAL IMAGES 

Many techniques and algorithms have been proposed 
for digital image segmentation. Traditional 
segmentation such as thresholding, histograms or 
other conventional operations are rigid methods. 
Automation of these classical approximations is 
difficult due to the complexity in shape and variability 
within each individual object in the image. 

The mean shift is a non-parametric procedure that has 
demonstrated to be an extremely versatile tool for 
feature analysis. It can provide reliable solutions for 
many computer vision tasks.  Mean shift method was 
proposed in 1975 by Fukunaga and Hostetler. It was 
largely forgotten until Cheng's paper retook interest on 
it. Segmentation by means of the Mean Shift Method 
carries out as a first step a smoothing filter before 
segmentation is performed. 

Entropy is an essential function in information theory 
and this has had a special uses for images data, e.g., 
restoring images, detecting contours, segmenting 
images and many other applications. However, in the 
field of images the range of properties of this function 

could be increased if the images are defined in  
rings. The inclusion of the ring theory to the spatial 
analysis is achieved considering images as a matrix in 

which the elements belong to the cyclic ring . From 
this point of view, the images present cyclical 
properties associated to gray level values. 

Ring Theory has been well-used in cryptography and 
many others computer vision tasks. The inclusion of 
ring theory to the spatial analysis of digital images, it is 
achieved considering the image like a matrix in which 

the elements belong to finite cyclic ring The ring 
theory for the Mean Shift Iterative Algorithm was 

employed by defining images in a ring A good 
performance of this algorithm was achieved. 
Therefore, the use of the ring theory could be a good 
structure when one desire to compare images, due to 
that the digital images present cyclical properties 
associated with the pixel values. This property will 
allow to increase or to diminish the difference among 
pixels values, and will make possible to find the edges 
in the analyzed images. 
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In this paper, a new similarity index among images is 
defined, and some interesting properties based on 
this index are proposed. We compare also the 
instability of the iterative mean shift algorithm (MSHi) 
by using this new stopping criterion . Furthermore, we 
make an extension, and we expand the theoretical 
aspects by studying in depth the cyclical properties of 
rings applied to images. For this purpose, some 
issues are pointed out below: 

• Revision of the mean shift theory. 

• Important elements of the ring  
are given: neutral, unitary, and inverse. In 
particular, the inverse element was used so 
much to the theoretical proofs as well as 
practical aspects. 

• Explanation of strong equivalent images by 
using histograms. 

• Definition of equivalence classes. 

• Quotient space. Definition and existence. 

• Natural Entropy Distance (NED) definition. 

• Configuration of the algorithm MSHi with the 
NED distance. 
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