
 

 

 

Fauja Singh* 

w
w

w
.i
g

n
it

e
d

.i
n

 

905 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 13, Issue No. 2, July-2017, ISSN 2230-7540 

 

Integration Object-Oriented Testing with UML 

 

Fauja Singh* 

Ravi Chowk, Purani Abadi, Sri Ganganagar, Rajasthan, India 

Abstract – Today's world is Object Oriented. In this Object Oriented world, we have Object-Oriented 
Languages, Object-Oriented Analysis, Deigning, and Testing of Softwares. From History, the foremost 
popular Object-Oriented modeling approaches are Rumbaugh's Object Modeling Technique (OMT), which 
was better for Object-Oriented Analysis (OOA), and Grady Booch's Booch method which was better for 
Object-Oriented Design (OOD). In 1994 OMT and Booch Method were unified into Unified Modeling 
Language (UML). Later on, in 1996, Object-Oriented Software Engineering (OOSE) also unified with 
UML.UML has synthesized the notation of Booch Method, the Object Modeling Technique, and Object-
Oriented Software Engineering by fusing them into single and widely usable modeling language. Object-
Oriented Testing remains separate. Therefore the thrust behind this paper is to integrate Object-Oriented 
Testing with UML. 

Keywords – Object-Oriented Testing, OOAD, OOSE, UML, etc. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1. INTRODUCTION 

Object-oriented software is being developed in 
repeated additions. It tests the firms and interfaces of 
the components that are put together. Object-oriented 
Testing is often done on four different levels: 

I. Testing one method. 

II. Testing an object. 

III. Testing sets of object-oriented components. 

IV. Testing a whole system. 

There are usually four levels of Testing for object-
orientated systems counting on users approach, 
consisting of: 

I. Method Testing. 

II. Class Testing. 

III. Interclass Testing. 

IV. System Testing. 

Smallest testable unit is the encapsulated Class. 
Traditional Testing focuses on input-process-output, 
whereas class testing focuses on each method. OO 
does not have an ordered control structure; that is why 
traditional top-down and bottom-up integration tests 
have little meaning. 

OO Testing is analogous to the Testing of a standard 
system but is different. Once code has been created, 

OO testing begins with class testing. A series of tests 
are designed for those exercise class operations and 
examine whether errors exist together with class 
procedures and analyze whether flaws exist together. 
Class cooperates with other classes. 

2. ISSUES OF OBJECT ORIENTED 
SOFTWARES 

Testing within the case of conceptual software and 
therefore the issue of object-oriented software are- 

2.1 Unit Testing within the OO context 

Class Testing of OO software is equivalent to unit 
testing for conventional software. 

2.2 Integration Testing within the OO Context 

There are two different strategies for integration 
testing. The first, Thread Based testing, combines the 
classes needed to reply to at least one input or event 
for the system. Each thread is integrated and tested 
individually. The second integration approach, Use 
Based Testing, begins designing the system by 
testing those separate classes that use only a few 
server classes. After the independent classes are 
tested, the following classes, called Dependent 
Classes, are tested. Cluster Testing is one stride 
within the integration testing of OO software. Here, a 
cluster of collaborating lasses is exercised by 
designing test cases that plan to uncover errors 
within the collaboration. 

 



 

 

Fauja Singh* 

w
w

w
.i
g

n
it

e
d

.i
n

 

906 

 

 Integration Object-Oriented Testing with UML 

2.3 Validation Testing within the OO context 

At the validation or system level, the small print of the 
category connection disappears. The acceptance of 
OO software focuses on user-visible action and user-
recognizable output from the system. to help in 
deriving validation tests, the tester should draw upon 
the use-cases that are a part of the analysis model. 
Traditional black-box testing methods are often wont to 
drive validation tests. Besides, test cases could also 
be derived from the object-behavior model, and 
therefore the event flow chart was created as a part of 
OOA. 

Testing affects all stages of the software engineering 
cycle. At present, UML includes OOA, OOD, and 
OOSE. The thrust of this paper is to integrate OOT 
(Object-Oriented Testing) with UML. 

3. INTRODUCTION TO UML 

3.1 OOAD 

Object-oriented analysis and design (OOAD) may be a 
software engineering method that models a system as 
a gaggle of related objects. Various models are often 
constructed to point out the static structure, dynamic 
behavior, and run-time deployment of those 
collaborating objects. Several different notations 
represent these methods, like the Unified Modeling 
Language (UML). Object-oriented analysis (OOA) 
applies object-modeling techniques to evaluate the 
functional requirements for a system. Object-oriented 
design (OOD) explains the analysis models to supply 
implementation specifications. OOA concentrates on 
what the system does, OOD on how the system does 
it. 

3.1.1 Object-oriented systems 

Objects make an object-oriented system. The 
performance of the system comes from the mixing of 
these objects. Integration of objects involves those 
sending messages to every other. Sending a message 
not the same as calling a function therein; when a 
destination object receives a message, it determines 
what function to bring the best service that message. 
An, and many various functions could also achieve an 
equivalent message one selected counting on the 
state of the target object. 

3.1.2 Object-oriented analysis 

Object-oriented analysis (OOA) looks at the matter 
domain, meaning to produce a theoretical model of the 
knowledge that exists within the field being analyzed. 
The results of the object-oriented analysis may be a 
description of what the system is functionally required 
to try to do during a theoretical model. It is also going 
to include some interface mock-up. Object-oriented 
analysis is to develop a model that describes computer 
software because it works to satisfy a group of 
customer-defined requirements. 

3.1.3 Object-oriented design 

Object-oriented design (OOD) transforms the 
theoretical model produced in object-oriented analysis 
to think about the constraints enforced by the chosen 
architecture and any non-functional technological. The 
result is a model of the answer domain, an in-depth 
description of how the system is made. 

3.1.4 Object-Oriented modeling 

Object-Oriented modeling, or OOM, maybe a modeling 
paradigm mainly utilized in programming. Before the 
increase of OOM, the effective prototype was 
procedural programming, which highlighted the 
utilization of prudent reusable code blocks that would 
stand on their own, take variables, perform a function 
on them, and return values. 

The Object-Oriented paradigm assists the 
programmer in addressing the complication of a drag 
domain by taking the matter not as a gaggle of 
functions that will be executed but primarily as a 
group of related, interacting Objects. The modeling 
task then specifies, for a selected context, those 
Objects (or the category the Objects belong to), their 
corresponding set of fields and Methods, shared by 
all Objects of the category. 

3.2 Object-oriented software engineering 

Object-oriented software engineering (OOSE) is an 
object modeling language and technique. In 1992 
OOSE was developed by Ivar Jacobson. It is the 
primary object-oriented design technique to use 
cases to make software design. Together with the 
Unified Modeling Language (UML), primary sources, 
concepts, and documentation from OOSE are fused 
in UML. 

3.3 UML 

Unified Modeling Language (UML) could also be a 
regulated general-purpose modeling language within 
the world of software engineering. The Unified 
Modelling Language (UML) is used to specify, 
visualize, modify, construct and document the 
artifacts of an object-oriented software-intensive 
system under development. UML offers a typical 
because to imagine a system's architectural 
blueprints. 

UML is used with all processes throughout the 
software development life cycle and across different 
implementation technologies. UML has synthesized 
the notations of the Booch method, the Object-
modelling technique (OMT), and Object-oriented 
software engineering (OOSE) by fusing them into 
one familiar and widely usable modeling language. 
UML aims to be a specific modeling language that 
can model concurrent and distributed systems. UML 
could also be a de facto industry standard evolving 
under the thing Management Group (OMG). OMG 



 

 

 

Fauja Singh* 

w
w

w
.i
g

n
it

e
d

.i
n

 

907 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 13, Issue No. 2, July-2017, ISSN 2230-7540 

 

initially involved information on object-oriented 
methodologies which can create a rigorous software 
modeling language. Many industry leaders have 
responded in earnest to help make the UML standard. 

The Unified Modeling Language (UML) assists 
software analysts and designers visualize, document, 
and construct object-oriented systems. Three leading 
advocates of object-oriented methodology, Grady 
Booch, James Rumbaugh, and Ivar Jacobson, 
developed UML. 

 

Figure 1 

Following are the varied modeling diagrams UML 
notation provides: 

• Use Case diagram 

• Class diagram 

• Object diagram 

• Interaction diagrams – Sequence diagram, 
Collaboration diagram 

• Activity diagram 

• Statechart diagram 

• Component diagram 

• Deployment diagram 

4. OBJECT-ORIENTED TESTING 

The essential advantage of the object-oriented 
paradigm is that it provides a consistent structure for 
all components. This appears to upset the testing 
process; it will be exploited to support an object-
oriented approach to Testing. To check a category, the 
programmer must be ready to undertake the 
subsequent activities: 

• Create an instance of the category, i.e., an 
object, passing the acceptable parameters to 
the constructor 

• Call the methods of the thing passing 
parameters and receiving results (c) examine 
the interior data of the item. 

This can be practiced by creating a test program for 
every Class and, therefore, debug statements. 
However, it could even be achieved by the inclusion of 
appropriate mechanisms within the program 
development environment itself. This can eliminate the 
necessity for both test programs and, therefore, modify 
the category being tested. 

An Object-Oriented system consists of several objects 
which communicate with one another. These objects 
contain both data and behavior, making them larger 
units than the individual routines that one works 
within a standard system development method. 
Object-oriented testing approach prevails among 
automated testing tools today thanks to: 

• Vertical capability focus allowing to take 
advantage of specific features of the 
programming platform, 

• Robustness of test scripts because of the 
power to spot properties and invoke actions 
of individual GUI components, 

• Reasonable test result verification means, 

• Easy to know for engineers conversant in the 
actual programming platform. 

5. AN OBJECT-ORIENTED TESTING 
FRAMEWORK 

The testing framework is meant to support the 
Testing of object-oriented class hierarchies. 

5.1 The object test 

Object testing is meant to check one Class. In this 
test, an Object is made, called, and queried to verify 
correct results. This sort of test is further sub-divided 
into: 

Method tests: In each, one method is named to 
verify the proper operation. 

Behavior tests: A series of methods are called to 
verify the proper behavior of a series of state 
transitions. 

5.2 The collaboration test 

The object-level test is merely the primary step in 
Testing for a reliable and robust class hierarchy. The 
subsequent step is to check objects together. The 
technique recommended here is to make a separate 
test object for every identifiable set of collaborating 
objects. A group of objects that implements a design 



 

 

Fauja Singh* 

w
w

w
.i
g

n
it

e
d

.i
n

 

908 

 

 Integration Object-Oriented Testing with UML 

pattern, for instance, is a perfect (and obvious) 
candidate for a collaboration test suite. Differentiating 
an appropriate set of objects is by functionality: the set 
of objects that must perform a selected function must 
be tested to ascertain if they complete it. (Strictly 
speaking, these are two different sorts of Testing, but 
we lump them in together.) 

6. AN OO TESTING APPROACH 

The main advantage of working closely with other IT 
professionals is that they learn new skills from them, 
and therefore the best object developers will learn and 
adapt fundamental concepts from other disciplines. An 
example is class normalization, the object-oriented 
version of knowledge normalization, a set of 
straightforward rules for reducing coupling and 
increasing cohesion with object designs. 

Testing techniques 

Black-box Testing 

Testing that validates the item being tested when 
given the acceptable input provides the expected 
results. 

Class testing 

The act of ensuring that a category and its instances 
(objects) operate as defined. 

Class-integration testing 

The act of assuring that the classes, and their 
instances, from some software, perform as defined. 

Code review 

A sort of technical review during which the deliverable 
being reviewed is an ASCII text file. 

Component testing 

The act of justifying that a component works as 
defined. 

Coverage testing 

The act of ensuring that each line of code is exercised 
a minimum of once. 

Design review 

A technical review during which a design model is 
tested. 

Inheritance-regression testing 

The act of working the test cases of the superclasses, 
both direct and indirect, on a liable subclass. 

 

Integration testing 

Testing to verify that several modules of software work 
together. 

Method testing 

Testing to verify away (member function) performs as 
defined. 

Model review 

An inspection, ranging from a proper technical review 
to an off-the-cuff walkthrough, by others who have not 
directly been involved in the model's event. 

Path testing 

The act of ensuring that each one logic path within the 
code is exercised a minimum of once. 

Prototype review 

A process by which users run through a set of use 
cases, employing a prototype as if it had been the 
natural system. The most goal is to check whether 
the planning of the prototype meets their needs. 

Prove it with code 

the most straightforward thanks to determining if a 
model reflects what is needed or what should be built 
is to create software that supported that model that 
shows that the model works. 

Regression testing 

Ensuring that previously tested behaviors still work, 
needless to say, after changes are made to the 
software. 

Stress testing 

The act of assuring that the system performs under 
high volumes of transactions, users, and load. 

Technical review 

a top-quality assurance technique during which the 
planning of an application is examined critically by a 
gaggle of peers. This process is usually mentioned 
as a walkthrough, an inspection, or a referee. 

Interface testing 

The interface (UI) testing ensures that it follows 
accepted UI standards and meets its wants. They 
are often mentioned as graphical interface (GUI) 
Testing. 

 



 

 

 

Fauja Singh* 

w
w

w
.i
g

n
it

e
d

.i
n

 

909 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 13, Issue No. 2, July-2017, ISSN 2230-7540 

 

White-box Testing 

Testing to validate that particular lines of code work as 
expected. Also mentioned as clear-box Testing. 

7. STRATEGIES UTILIZED IN OOT 

To cover the strategies and tools related to object-
oriented Testing 

• Analysis and style Testing 

• Class Tests 

• Integration Tests 

• Validation Tests 

• System Tests 

 

Figure 2 

7.1 Analysis and Design: 

Testing begins by validating the OOA and OOD 
models 

• How can OOA models we tested 
(requirements and Use cases)? 

• How can OOD models we tested (class and 
sequence diagrams)? 

7.2 Class (Unit) Testing 

Smallest testable unit is that the encapsulated Class. 
Test each operation as a part of a category hierarchy 
because its class hierarchy defines its context of Use. 

Approach: 

• Test each method (and constructor) within a 
category 

• Test the state behavior (attributes) of the 
category between methods 

How is class testing different from conventional 
Testing? 

Traditional Testing centers on input-process-output, 
whereas class testing centers on each method, then 
composing sequences of methods to practice 
elements of a class. However, white-box Testing can 
still be applied. 

Each test suit should contain: 

• A list of messages and actions which will be 
applied as an outcome of the test 

• A list of exceptions that will occur because 
the Object is tested 

• A list of external conditions for setup (i.e., 
changes within the environment external to 
the software that has got to exist to conduct 
the test properly) 

• Supplementary information will aid in 
understanding or implementing the test 

• Automated unit testing tools facilitate these 
requirements. 

White box tests: 

• Basis track, state, data flow, and loop tests 
can all apply to individual practices but do not 
test intercommunications between methods. 

• Identify methods applicable to a category. 

• Define restrictions on their Use – e.g., the 
category should be initialized first. 

• Identify a minimum test sequence – an 
execution sequence that defines the 
minimum life history of the category. 

7.3 Integration applied three different incremental 
strategies 

Thread-based Testing: integrates classes required 
to reply to at least one input. 

Use-based Testing: combines classes asked by one 
use case 

Cluster testing: integrates classes required to 
demonstrate one collaboration multiple Class 
Random Testing. 

 

 



 

 

Fauja Singh* 

w
w

w
.i
g

n
it

e
d

.i
n

 

910 

 

 Integration Object-Oriented Testing with UML 

7.4 Validation 

Are we building the right product? 

Validation succeeds when software functions in a way 
that the customer will reasonably expect. Specialize in 
user-visible actions and user-recognizable outputs. 

Details of sophistication connections disappear at this 
level Validation uses: 

• Use-case scenarios from the software 
requirements spec 

• Black-box Testing to make a deficiency list 

• Acceptance tests through alpha testing at 
designer's site and beta testing at user's site 
with actual customers 

8. CONCLUSION 

Over the past decade, Grady Booch, James 
Rumbaugh, and Ivar Jacobson have collaborated to 
mix the most specific features of their OOA and OOD 
methods into a unified method. The result called the 
Unified Modeling Language [UML] had become widely 
used throughout the industry. In UML, a system is 
represented using five different "views" that illustrate 
the system from precisely different panoramas. The 
views present in UML are: 

1. User Model View; This view represents the 
system [or product] from the user's 
perspective. 

2. Structural Model View: Data and operations 
are inspected from within the system. 

3. Behavioral Model View: This part of the 
analysis model represents the dynamic or 
behavioral aspects of the system. It also 
portrays the communications or collaborations 
between several structural components 
specified within the user model and structural 
model aspects. 

4. Implementation Model View: The fundamental 
and behavioral features of the system are 
depicted as they are to be formed. 

5. Environment Model View: The structural and 
behavioral aspects of the environment during 
which the system is implemented are 
represented. 

In general, UML analysis modeling focuses on the 
user model and structural model, and structural model 
views of the system. UML design modeling discusses 
the behavioral pattern, implementation model, and 
environmental model aspects. 

We do not have an Object-Oriented Testing Model in 
UML. That is why users adopt different testing models. 
This solution will help to form a typical testing model. 
The user would require that they ought to be using 
UML. 

This study will help to mix Object-Oriented Testing with 
Object-Oriented Analysis, Object-Oriented Designing, 
and Object-Oriented Software Engineering into UML. 

REFERENCES 

[1] Bhadauria, Sarita Singh, Abhay Kothari, and 
Lalji Prasad (2011). ―A Full Featured 
Component (Object-Oriented) Based 
Architecture Testing Tool" International 
Journal Of Computer Science Issues (IJCSI) 
8.4: pp. 618-627. 

[2] Gu, Dechang, Yin Zhong, and Sarwar Ali 
(1994). On Testing of Classes in Object-
Oriented Programs‖ Proceedings of the 
1994 Conference of the Centre for Advanced 
Studies on Collaborative Research 

[3] Jain, Ajeet K. (2008). "Testing Polymorphism 
in Object-Oriented Programming." ICFAI 
Journal of Computer Sciences 2.4: pages 
43-53. Johnson, Jr., Morris S. A Survey of 
Testing Techniques for Object-Oriented 
Systems, Proceedings of the 1996 
Conference of the Centre for Advanced 
Studies on Collaborative research (CASCON 
'96) 

[4] Khatri, Mrs. Sujata, Chhillar Dr. R. S. and 
Sangwan Mrs. Arti (2011). "Analysis Of 
Factors Affecting Testing In Object-oriented 
Systems," International Journal On 
Computer Science And Engineering 3: pp. 
1191. 

[5] Labiche, Y., Thevenod-Fosse, P., 
Waeselynck, H., and Durand, M.-H, "Testing 
Levels for Object-Oriented Software," 
Proceedings of the 22nd International 
Conference on Software Engineering, pages 
136-145 

[6] Turner, C.D., and Robson, D.J. (1993). "The 
State-Based Testing of Object-Oriented 
Programs," Software Maintenance, 1993 
CSM-93, Proceedings., Conference on 
Software Maintenance pages 302-310, 27-
30 Sep1993 

[7] Mahfuzul Huda, Dr.Y.D.S.Arya, and Dr.M. H. 
Khan. "Measuring Testability of Object 
Oriented Design: A Systematic Review." 
International Journal of Scientific 
Engineering and Technology, Vol. 3, Issue 
10, pp: 1313-1319 Oct 2014 



 

 

 

Fauja Singh* 

w
w

w
.i
g

n
it

e
d

.i
n

 

911 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. 13, Issue No. 2, July-2017, ISSN 2230-7540 

 

[8] Briand, L. C., Labiche, Y., & He, S. (2009). 
Automating regression test selection based on 
UML designs. Information and Software 
Technology, 51(1), pp. 16–30. 
doi:10.1016/j.infsof.2008.09.010. 

[9] Zheng, W., & Bundell, G. (2008). Contract-
Based Software Component Testing with UML 
Models. Computer Science and its 
Applications, 2008. CSA '08. International 
Symposium on, 978-0-7695(13 - 15 October 
2008), 83–102. 

[10] Swati Tahiliani, Pallavi Pandit "A Survey of 
UML-Based approaches to Testing," 
International Journal of Computational 
Engineering Research, Vol.2 Issue.5, pp. 
1396--1400. 

[11] Nabil Mohamamed Ali Munssar and Dr. A. 
Goardhan (2012). "Comparison study between 
The traditional and The object-oriented 
approaches to Develop all project in software 
Engineering," International Journal Of 
Computer Science And Information 
Technology, Vol 3(1), pp. 3022--3028. 

[12] David C.Kung and Pei Hsia "Object-Oriented 
Software testing-some Research and 
Development," computer Science and 
Engineering. 

[13] Genero M., J. Olivas, M. Piattini and F. 
Romero (2001). "A Controlled Experiment for 
Corroborating the Usefulness of Class 
Diagram Metrics at the early phases of Object 
Oriented Developments," Proceedings of ADIS 
2001, Workshop on decision support in 
Software Engineering, 2001. 

[14] Kout, A., Toure, F., & Badri, M. (2011). An 
empirical analysis of a testability model for 
Object oriented programs. ACM SIGSOFT 
Software Engineering Notes, 36(4), 1. 
doi:10.1145/1988997.1989020. 

 

Corresponding Author 

Fauja Singh* 

Ravi Chowk, Purani Abadi, Sri Ganganagar, 
Rajasthan, India 

fauja.singh@live.in 

 

 

mailto:fauja.singh@live.in

