

Mahak Dhanda*

w
w

w
.i
g

n
it

e
d

.i
n

153

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XIV, Issue No. 1, October-2017, ISSN 2230-7540

Performance and Energy Efficiency of Parallel
Processing in a Multiprocessor System

Mahak Dhanda*

M. Tech (Computer Science) Net Qualified

Abstract – Performance of the multi-processor system analysed by them employed multitasking in case,
there are fewer programs in the system requiring CPU service Than the number of CPUs. However, if
there are alleast as many programs requiring CPU service as there are CPUs, then each CPU works on an
independent program. In Their model, each program is broken up into two completely independent tasks
when tv/o processors cooperate on a single program, A review of the work dona in the field of
performance analysis of multiprocessor systems based on queueing models is contained in £ 110J,
Sauer and Chancly have studied the behaviour of a multiprocessor system under various scheduling
strategies and CPU service distributions.

Keywords:- Multiprocessor, CPU, Multiprogramming, Processors, Independent Program etc.

- X -

INTRODUCTION

It is possible to reduce the execution time of a
program if it is decomposed into a number of
independent tasks for simultaneous execution on
different processors of a multiprocessor system, A
method for partiti_oning a 'serial' program into tasks
consisting of a single statement or a group of
statements has been discussed in the previous
chapter. Studies have revealed that for a single
FORTRAN program? The number of independent
tasks obtained by program decomposition and
capable of simultaneous execution may not be
sufficient for utilising the entire processing capacity of
a multiprocessor system. A more meaningful use of
such a system would be the sharing of the processor
resources among a number of programs each of
which is decomposed into a number of Independent
tasks. This reduces idle time of the processors. A
CPU will find a task waiting for execution most of the
time. Multiprogramming a number of jobs in such
parallel processing mode is essential for increasing
the overall utilization of the system bpt may cause
serious contention for processor resources and an
inordinate delay to the program execution time if the
degree of multiprogramming is too high. Here we
present a study based on probabilistic model of a
method for scheduling the tasks on different
processors with a view to reducing the delay caused
by processor contention. Parallel processing has
received enormous attention in the last 50 years, c.f.
fundamental presentations in the books as (Marsan,
1989. Kobayashi and Mark, 2009. Reiser and
Lavenberg, 1980). Most of the studies in the early
times of computer science addressed problems of

scheduling tasks with given task processing times
to be processed on a single or few processing
elements under various scheduling strategies based
on constant processing times, order of arrival,
priority classes or deadlines for the execution. Many
results are known from this research on optimum
scheduling with respect to the shortest possible
execution duration until completion of a given
workload. For the description of more complex
systems with precedence and synchronization
constraints, Petri Nets (PN) have proved as an
excellent modeling methodology to guarantee the
correct execution and to detect deadlock situations
by the control of state transitions using places and
tokens but were not able to express performance
phenomena as a result of the absence of time. This
deficiency was later corrected by the introduction of
timed Petri Nets and stochastic Petri Nets (SPN)
where state transitions were extended by
deterministic or stochastic durations. For the
processing of such generalized Petri Nets, powerful
tools were developed either for the simulation or for
an analytical evaluation under Markovian process
assumptions. Simultaneously to the developments
of scheduling parallel computing as described
before, queuing network theory has progressed
extensively within the last 5 decades which is
expressed by the phenomenon of ―product-form‖
queuing networks and efficient algorithms for their
numerical performance evaluation. Queuing
networks allow for modeling of parallelism at large
but are severely limited with respect to
synchronization constraints and generalized
stochastic arrival and service processes beyond
Markovian assumptions. These deficiencies have

Mahak Dhanda*

w
w

w
.i
g

n
it

e
d

.i
n

154

 Performance and Energy Efficiency of Parallel Processing in a Multiprocessor System

partly been overcome by approximate evaluation
methods and powerful computer tools for queuing
network analysis and simulations, see, e.g. (Adve
and Vernon, 2004). Apart from the state-of-the-art
reached in queuing theory and through SPN, main
problems remained open as decomposition methods
to reduce complexity in the evaluation and how to
apply the results practically as, e.g., to detect
parallelism in the program execution path (at
instruction or task level) or in the data automatically
as a basis for scheduling and program execution.
More recent developments in microelectronics and in
program languages give rise to a re-thinking of
parallel processing: Through microelectronics
powerful multi-core processors with 16 or 32 cores
are integrated on chip-level; multi-processor
computer racks provide thousands of processors
within a cloud data center. Developments in high-
level programming languages allow for parallel
program constructs which can be explicitly expressed
by the program developer and which support
compilation and scheduling by the operating system,
in computing and communication.

In this paper, a novel and practical approach to the
evaluation of parallel processing will be presented
which is based on processing jobs described by
reducable task graphs. A task graph models all
possible execution paths of a program (computation
job) and can be described by a directed acyclic graph
(DAG) with generally-distributed task execution
times, precedence conditions and synchronization
constructs for parallel executable tasks.

From the viewpoint of analysis it is important to
derive task graphs automatically, to generate task
graphs synthetically and to reduce the complexity by
graph reduction methods. For the analytic
performance analysis of this paper it is important that
the task graph can be reduced stepwise by
elementary aggregations of two tasks at each step.
By this approach, it is possible to reduce the whole
task graph for a given number n of processing
elements to one ―virtual‖ task with a corresponding
generally-distributed virtual processing time. Thus,
the execution of a specified job stream on a multi-
core or multi-processor system can be modeled by a
virtual queuing system of type GI/G/1 where GI
represents the job arrival stream with arrival rate k, G
represents the virtual task execution time on the
multi-processor system, and where n ¼ 1 server
represents a ―virtual processor‖. Jobs are served by
the virtual processor in a batch processing mode,
i.e., one at a time only, to avoid context switching
overhead and cache splitting in case of simultaneous
processing of multiple jobs in a time-sharing mode.

Temporally idle processors are turned in a low-power
sleeping mode to save energy consumption during
enforced ―slack times‖ for concurrent processes or
idle periods which can be accomplished by dynamic
voltage and frequency scaling (DVFS).

REVIEW OF LITERATURE

A review of the work dona in the field of performance
analysis of multiprocessor systems based on
queueing models is contained in £ 110J,

Sauer and Chancly (2008) have studied the
behaviour of a multiprocessor system under various
scheduling strategies and CPU service distributions.
They have also studied the impact of the level of
multiprogramming on throughput.

Multitasking (i,e, 5 when a program is decomposed
into a partially ordered set of tasks which may be
processed in parallel) in a multiprocessor system has
been studied by Browne et al. (1997) when two or
more CPUs cooperate on a single program.
Performance of the multiprocessor system analysed
by them employed multitasking in case, there are
fewer programs in the system requiring CPU service
than the number of CPUs. However, if there are
alleast as many programs requiring CPU service as
there are CPUs, then each CPU works on an
independent program. In their model, each program
is broken up into two completely independent tasks
when tv/o processors cooperate on a single program,
The time required to complete CPU service for that
program is 1/K times the time required to complete
CPU service on a single CPU whore K (defined as
cooperation factor) is between 1 and 2, K was
assumed to have the value 2 assuming perfect
cooperation between processors. OPU-I/O, I/O - I/O
overlap models have been formulated by l'owsley et
al., Their paper presents models for
multiprogrammed systems iu which programs may
either partially or completely overlap CPU and I/O
processing and where two I/O activities may partially
or completely overlap among themselves and CPU
processing. Their models require tight
synchronisation i.e, both the CPU and I/O (or the tv/o
I/O) tasks must complete execution before further
processing can continue„ Recently Heidelberger and
Trivedi (1999)have attempted to model parallel
processing system in which a job subdividee into two
or more tasks at some point during its execution and
do not require synchronisation. In they have
discussed a model for parallel processing in which a
job consists of a primary task and two or more
secondary tasks which execute concurrently. Al^ the
secondary tasks must complete execution before the
primary task becomes active again. In , their primary
interest has been in developing approximate
analytical solution methods for the performance
prediction of such system .

METHODS AND METHODOLOGY

In tills chapter, we formulate a performance model of
parallel processing on a multiple CPU system when
each program is partitioned into a number of
independent tasks capable of simultaneous
execution but require tight synchronization i.e., all the

Mahak Dhanda*

w
w

w
.i
g

n
it

e
d

.i
n

155

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XIV, Issue No. 1, October-2017, ISSN 2230-7540

independent tasks must complete execution before
further processing of the program can continue. The
model suggested

here for performance analysis is different from those
that have been proposed by others and assumes
that for each program the number of CPU tasks
capable of simultaneous execution under SIM or
TOG type ordering [a§] is a random variable. The
multiple server queuing model proposed here has
been used for studying the throughput of a
multiprocessor system with variation in program
characteristics, degree of multiprogramming etc, as
discussed in the paper Before we formulate a model
for performance analysis of a multiprocessor system
exploiting implicit parallelism in programs, we
discuss, a method for scheduling the independent
tasks on different processors. A scheme for
implementing this scheduling method by table
interpretation is also suggested which is different
from the one proposed by Gonzalez and
Ramamurthy.

HARDWARE ORGANISATION

Here we will be concerned with the performance
analysis of a multiprocessor system consisting of a
number of homogeneous processors sharing access
to a global memory. The performance of such
'closely coupled* multiprocessors suffer because of
contention for the shared memory when the CPUs
attempt to access the main memory.

As discussed in Chapter 5» one way to avoid the
frequent access to main memory is by providing each
of the processors with a private cache so that
instructions and data may be accessed from cache
and reference to main memory has to be done only
in case the required item is not present in cache.
Here we analyse the performance of multiprocessors
with a two level memory hierarchy with each CPU
having a private cache attached to it. We have
assumed that the oache size and the block size have
been chosen to yield a high cache hit ratio. We have
dismissed main memory interference when writing
and reading from cache. Her main memory is
assumed to be interleaved. The choice of the
processor memory interconnection network to reduce
the communication time has been an important issue
in designing of multiprocessor systems.

Here we will restrict our analysis to multiprocessor
systems provided with processor memory
interconnection network having a high bandwidth
such thatj there is no serious delay due to contention
for processor memory interconnection. Thus the
hardware organisation of the multiprocessor system
chosen to be analysed is similar to Gmmp type
system. The analysis is not applicable for distributed
processing systems or Cm ^ type multiprocessors.

Program Model

The conceptual flow of execution in TOG or SIM type
of program block is shown in figure 7*1 * Cnee this
type of block is entered all individual tasks within this
block can proceed simultaneously, dependent only
upon the availability of resources. Control is not
allowed to pass beyond the block until all individual
tasks in this block have been completed. A program
alternates between CPU and I/O activities. A
program may be thought of as repeating cycles
where each cycle consists of an arbitrary number of
tasks requiring CPU service simultaneously under
SIM or TOG type execution ordering followed by one
requiring I/O service. The effect of overlapping of
CPU and I/O activities is not considered in this
model.

PREDECESSOR TABLE

The information contained in the Predecessor Table
is needed by the operating system for correctly
initiating tasks after a Branch task is encountered. A
Branch task can have more than one possible
successor, which may be contained in the same
row of the Parallel Task Table indicating that they
may be executed simultaneously. But as
successors of the same Branch task, control may
flow to only one of them depending on the outcome
of the testing' of the branch condition. Thus the
Operating System will not be able to get the entire
information about task initiation merely from the
Parallel Task Table but will also need information
about the tasks which should not be initiated
depending on the branch direction. It should be
noted that edges drawn in the Bata Flow Graph (as
discussed in the previous chapter) prevent any task

Mahak Dhanda*

w
w

w
.i
g

n
it

e
d

.i
n

156

 Performance and Energy Efficiency of Parallel Processing in a Multiprocessor System

within an IF block or successors of GO TO
statements to be initiated in an incorrect sequence.
The information of the Predecessor Table is kept in
two columns. The first column contains a task
number and the next column named as Task Mot
Reachable column (TNH) contains the numbers of
the tasks to which control cannot flow once the task
whose number appears in the first column is initiated.

The Information kept In the Predecessor Table is
obtained as follows:

(1) Construct a Control Flow Graph depleting
the sequence of execution of tasks which
would be followed if the program is run in a
uniprocessor environment, The Control Flow
Graph is represented by an Adjacency Matrix
An entry in this matrix is a 1 if and only if
control flows from task i to task j, A node in
the graph from which more than one directed
arte emanates represent a Branch task
which has more than one potential successor

(2) Construct the Reachability Matrix from the
Adjacency Matrix and transpose the matrix
obtained.

PERFORMANCE EVALUATION AND
ENERGY EFFICIENCY

Task graph processing on a multi-processor system
will be considered under two different aspects,
performance and energy efficiency. For comparison,
we will distinguish between two modes in each case:

Mode PP: Parallel processing of each job on the n-
processor system.

Mode SP: Serial processing of each job on one
processor of the n-processor system.

Performance Evaluation

The classical performance criterion for parallel
computing was formulated by (13a) (Amdahl‘s aw): If
a is the fraction of non-parallelizable parts of a
program, the ideal speed-up factor is

As a consequence of the introduced job description
by a DAG, the speed-up factor has to be re-defined
as the fraction of job processing times for n ¼ 1
(single processor) and n, i.e.,

Note, that this approach is more general as individual
task execution time variations and limitations in

parallelization are taken into consideration, where
(13a) holds for an idealized case of constant
parallelization degree of n only.

RESULTS & DISCUSSION

The results underline the following general properties

• The maximum capacities for PP are lower
than for SP.

• The maximum capacity for PP reduces with
increasing slack times caused by task
execution time variations.

• Trade-off of the performance results between
PP and SP with smaller response times for
PP in the low-load region and for SP in the
high-load region.

The main contribution of this paper is a novel method
by which parallel and serial processing of jobs on a
multi ore/multi-processor system can be analyzed for
generally-distributed task execution times by
stepwise reduction of directed acyclic task graphs.
The reductions are performed by task aggregations
for four principal structure elements of computation
programs: concatenation, alternative splitting,
iterative repetitions, and concurrency of tasks. The
mathematical operations are based on generally
distributed random task execution times. The
principal four structure elements are used for the
exact aggregation based on the theory of functions of
random variables. For an efficient computational
implementation, the generally-distributed task
execution times are represented by a mixed phase-
type model for the first and second order moments.
The method allows to represent the multi-core/multi-
processor system to standard queuing models of the
types GI/G/1 and GI/G/n, where the service times are
represented by their averages and coefficients of
variation. From the application‘s point of view, the
new method allows the extension of Amdahl‘s Law to
more realistic conditions of random task execution
times and arbitrary degrees of parallelization as well
as real-time performance metrics as the average job
response times. The trade-off between the two major
schedules for parallel and serial processing of jobs
on an n-server system leads to the most important
conclusion, that parallel processing is only superior
for low- and medium-load ranges, while serial
processing outperforms parallel processing for high
loads with respect to the maximum capacity and
response times. Both job execution modes are
neutral with respect to energy efficiency; the only
way to increase energy efficiency is by low-power
operation of idle processors through Dynamic
Voltage and Frequency Scaling (DVFS). The current
paper reflects the status of ―work in progress‖;
ongoing work addresses the development of general
analysis tools for the analytical solution as well as for
simulations.

Mahak Dhanda*

w
w

w
.i
g

n
it

e
d

.i
n

157

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XIV, Issue No. 1, October-2017, ISSN 2230-7540

REFERENCES:-

Adve, V. S., Vernon, M. K. (2004). Parallel program
performance prediction using deterministic
task graph analysis. ACM Trans. Computer
System (TOCS) 22(1), pp. 94–136.

Adve, V., Sakellariou, R. (2000). Compiler synthesis
of task graphs for parallel program
performance prediction. In: Proceedings of
13th International Workshop on Languages
and Compilers for High-Performance
Computing (LCPC 2000), Yorktown Heights,
N. J. (2000).

Ajmone Marsan, M. (1989). Stochastic Petri nets: An
elementary introduction. In: Rozenberg,
Grzegorz (ed.) APN 1989. LNCS, vol. 424,
pp. 1–29. Springer, Heidelberg (1990).

Kobayashi, H., Mark, B. L. (2009). System Modeling
and Analysis: Foundations of System
Performance Evaluation. Pearson/Prentice-
Hall Inc.

Kuehn, P. J. (1979). Approximate analysis of general
queuing networks by decomposition. IEEE
Trans. Commun. 27(1), pp. 113–126.

Reiser, M., Lavenberg, S. S. (1980). Mean-value
analysis of closed multichain queuing
networks. J. ACM 27(2), pp. 313–322.

Whitt, W. (1983). The queuing network analyzer. Bell
Syst. Techn. J. 62(9), pp. 2779–2815.

Corresponding Author

Mahak Dhanda*

M. Tech (Computer Science) Net Qualified

E-Mail – mahak0570@gmail.com

mailto:mahak0570@gmail.com

