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Abstract – Differential equations is one of the oldest field in the modern mathematics. It is consider being 
the mathematics of applications in the fields of engineering, physics, life sciences and other areas in the 
field of mathematical modeling. Differential equations is a higher mathematics course of applications. This 
needs the prior knowledge of calculus as foundation for this course. This material is an introduction to 
ordinary differential equations. This covers the basic topics on ordinary differential equations that can 
serve as foundations in advanced studies in differential equations. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

INTRODUCTION 

A differential equation is a mathematical equation that 
relates some function with its derivatives. In 
applications, the functions usually represent physical 
quantities, the derivatives represent their rates of 
change, and the equation defines a relationship 
between the two. Because such relations are 
extremely common, hence differential equations 
occur frequently in many branches of science 
including engineering, mathematics (both pure and 
applied mathematics), physics, economics, and 
biology. The subject of differential equations is built 
upon the subject of calculus. One possible 
explanation for this is to remember that a derivative 
describes a rate of change, so anytime it is used to 
describe how changes in one thing depend on 
changes in some other thing, differential equations 
are lurking in the background. Differential equations 
allow us to model changing patterns in both physical 
and mathematical problems. 

Ordinary differential equations display the fleeting 
development of the significant variables by depicting 
their deterministic elements. The investigation of 
dynamical systems with ODEs is a develop field and 
in this manner, there is a rich writing committed to 
their examination and arrangement. 

Tributes are utilized to display organic procedures on 
different levels running from quality articulation or 
flagging procedures on the cell level to the energy of 
medications all in all body level . Every one of these 
procedures have in like manner that their displaying 
with ODEs bears a significant level of uncertainty or 
potentially variability in both initial conditions and 
parameters. This is especially the situation when 
models are considered in a populace wide setting. At 
that point, uncertainty normally relates to boisterous 
estimations or the absence of information about 

individual systems, while variability alludes to 
varieties after some time in singular systems or inside 
the populace. 

In light of the likelihood thickness capacity of the 
random initial values, the issue can be recast as a 
thickness spread issue. The advancement of the 
thickness work is depicted by a frst-arrange linear 
partial differential equation (PDE). 

An ordinary differential equation can be composed in 
the form 

 (1) 

Where  is an unidentified function. The equation 

is said to be homogeneous if , giving then 

  (2) 

This is the most frequent usage for the term 
"homogeneous." The operator L is collected of a 

grouping of derivatives , , etc. The 
operator L is linear if 

 (3) 

and 

 (4) 

where is a scalar. We can differentiate this definition 
of linearity with the definition of more general term 
"relative" given, which, while comparable, concedes a 
consistent inhomo-geneity. 
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For the rest of this investigation, we will take L to be a 
linear differential operator. The general form of L is 

 (5) 

The ordinary differential equation, Eq. (1). is then 
linear when L has the form of Eq. (5). 

Definition: The functions  are 
said to be linearly independent when 

 is right only 

when  

A homogeneous equation of order N can be shown to 
have N linearly independent solutions. These are 
called complementary functions. If  are 
the complementary functions of Eq. (2). then 

 (6) 

is the general arrangement of the homogeneous Eq. 
(2). In dialect to be characterized in a future report, 
We can state the correlative functions are linearly 
independent and range the space of arrangements of 
the homogeneous equation; they are the bases of the 

invalid space of the differential operator L. If  is 
any particular solution of Eq. (1), the general solution 
to Eq. (2) is then 

 (7) 

Presently we might want to demonstrate that any 

arrangement  to the homogeneous equation 
 can be composed as a linear blend of the N 

correlative functions  

 (8) 

We can form extra equations by taking a progression 

of subordinates up to : 

 (9) 

 (10) 

This is a linear system of algebraic equations: 

 (11) 

We could fathom Eq. (11) by Cramer's control, which 
requires the utilization of determinants. For a special 
arrangement, we require the determinant of the 
coefficient grid of Eq. (11) to be non¬zero. This 
specific determinant is known as the Wronskian W of 

 and is characterized as 

 (12) 

The condition  demonstrates linear autonomy 

of the functions , since if , 
the main arrangement is . 
Tragically, the opposite isn't in every case genuine; 
that is, if , the correlative functions might be 
linearly reliant, however much of the time  
without a doubt suggests linear reliance. 

ORDINARY DIFFERENTIAL EQUATIONS 
WITH RANDOM INITIAL VALUES 

In this section we show the scientific setting for 
ODEs with random initial values together with their 
subsequent arrangement. 

We are keen on issues where the state  of 
the system can be depicted by an ordinary 
differential equation of the form 

 (13) 

The correct hand side  may rely upon 

parameters . Since we are occupied with an 
affectability examination regarding a model info 

comprising of both initial conditions  and 
parameters p, we consider the broadened state 

variable , With . This 
enables us to think about the impacts of varieties in 

 and  all the while by setting 

 (14) 

Let  signify a vector standard on  (e.g. the 
Euclidean standard). At that point, the 
accompanying theorem gives conditions for the 

presence and uniqueness of an answer  

Theorem 1 (Existence Theorem of Picard-
Lindelof). Let F 

be locally Lipschitz continuous, i.e., there exists 

 such that 
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Where  signifies an 
open neighborhood around  . At that point, the 
initial value issue (14) has a one of a kind 

arrangement . 

An adequate condition for neighborhood Lipschitz 
congruity is continuous differentiability of F as for the 
state variable , which will be accepted from this 
time forward. Give us a chance to signify the 

development operator  with 

 (15) 

which maps an initial state  to its state at time  . 
The development operator has the accompanying 
properties: 

(i)  for all , 

(ii)  for all  and 

, 

(iii)  is differentiate with respect to  for all 

 

reminder that by the first two properties,  forms 

a group, and therefore  is invertible with  

To scientifically differentiate the uncertainty or 
variability in initial values, we presume that  is 

a random variable. therefore,  is also a 

random variable and  a stochastic procedure. 

For any , let us denote with 

, 

the probability density function of the probability 

distribution of. , i.e. 

 (16) 

The objective is to solve the following difficulty: 

Problem 1 (Random Initial Value Problem). Let the 
system be described by an ODE of the form 

 

Expect the initial value  is a random 
significant and has a known likelihood conveyance 
with thickness UQ. The issue is to process the 
likelihood thickness work ut related with the random 

state  on a limited interval  

 

SOME APPLICATIONS 

Is the subject of ordinary differential equations 
important? The ultimate answer to this question is 
certainly beyond the scope of this book. However, 
two main points of evidence for an affirmative answer 
are provided in this chapter: 

• Ordinary differential equations arise naturally 
from the foundations of physical science. 

• Ordinary differential equations are useful 
tools for solving physical problems. 

You will have to decide if the evidence is sufficient. 
Warning: If you pay too much attention to 
philosophical issues concerning the value of a 
mathematical subject, then you might stop producing 
mathematics. 

Origins of ODE: The Euler-Lagrange Equation- 

Let us consider a smooth function  

a pair of points  two real numbers  

and the set  of all smooth curves 

 such that  and  Using this 
data, there is a function  given by 

 (17) 

The Euler-Lagrange equation, an ordinary differential 
equation associated with the function L—called the 
Lagrangian—arises from the following problem: Find 
the extreme points of the function  This variational 
problem is the basis for Lagrangian mechanics. 

Recall from the calculus that an extreme point of a 
smooth function is simply a point at which its 
derivative vanishes. To use this definition directly for 
the function  we would have to show that  is a 
manifold and that d> is differentiable. This can be 
done. However, we will bypass these requirements by 
redefining the notion of extreme point. In effect, we 
will define the concept of directional derivative for a 
scalar function on a space of curves. Then, an 
extreme point is defined to be a point where all 
directional derivatives vanish. 

Recall our geometric interpretation of the derivative of 
a smooth function on a manifold: For a tangent vector 
at a point in the domain of the function, take a curve 
whose tangent at time t = 0 is the given vector, move 
the curve to the range of the function by composing it 
with the function and then differentiate the resulting 
curve at t = 0 to produce the tangent vector on the 
range that is the image of the original vector under 
the derivative of the function. In the context of the 

function on the space of curves let us consider a 

curve  Note that for  the point  
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is a curve  as defined above. So, in 

particular, if  then  Rather than 

use the cumbersome notation , it is customary 
to interpret our curve of curves as a ―variation of 
curves‖ in  that is, as a smooth function 

 with the end conditions‖ 

 

In this interpretation,  

Fix a point  and suppose that  or 

equivalently that  Then, as s varies we 
obtain a family of curves called a variation of the 
curve q. The tangent vector to  at q is, by definition, 

the curve  given by  where 

 

Of course, v is usually not in  because it does not 
satisfy the required end conditions. However, v does 
satisfy a perhaps different pair of end conditions, 
namely, 

 

Let us view the vector V as an element in the ―tangent 
space of C at q." 

What is the directional derivative  of  at q in 
the direction V? Following the prescription given 
above, we have the definition 

 

After evaluation at  and an integration by parts, 
we can rewrite the last integral to obtain 

 (18) 

If for all vectors V, then the curve q is 
called an extremal. In other words, q is an extremal if 
the last integral in equation (18) vanishes for all 
smooth functions v that vanish at the points t1 and t2. 

Origins of ODE: Classical Physics- 

The fundamental laws of all of classical physics can 
be reduced to a few formulas! For example, a 
complete theory of electromagnetics is given by 
Maxwell‘s laws 

 

and the conservation of charge 

 

Here E is the called electric field, B is the magnetic 

field, is the charge density, j is the current, is a 
constant, and c is the speed of light. The fundamental 
law of motion is Newton‘s law 

 

―the rate of change of the momentum is equal to the 
sum of the forces.‖ The (relativistic) momentum of a 
particle is given by 

 

where, as is usual in the physics literature,  
and the norm is the Euclidean norm. For a classical 
particle (velocity much less than the speed of light), 
the momentum is approximated by p = mv. There 
are two fundamental forces: The gravitational force 

 

on a particle of mass m due to a second mass M 
where G is the universal gravitational constant and 
er is the unit vector at M pointing in the direction of 
m: and the Lorentz force 

 

where q is the charge on a particle in an 
electromagnetic field. That‘s it! 

The laws of classical physics seem simple enough. 
Why then is physics, not to mention engineering, so 
complicated? Of course, the answer is that in almost 
all real world applications there are lots of particles 
and the fundamental laws act all at once. When we 
try to isolate some experiment or some physical 
phenomenon from all the other stuff in the universe, 
then we are led to develop ―constitutive‖ laws that 
approximate the true situation. The equations of 
motion then contain many additional ―forces.‖ Let us 
consider a familiar example. When we model the 
motion of a spring, we use Hooke‘s force law to 
obtain the equation of motion in the form 

 



 

 

 

 

Versha Chopra* 
 
 

w
w

w
.i
g

n
it

e
d

.i
n

 

752 
 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. XIV, Issue No. 1, October-2017, ISSN 2230-7540 

 

However, Hooke‘s force law is not one of the two 
fundamental force laws. In reality, the particles that 
constitute the spring obey the electromagnetic force 
law and the law of universal gravitation. However, if 
we attempted to model the fundamental forces acting 
on each of these particles, then the equations of 
motion would be so complex that we would not be 
able to derive useful predictions. 

What law of nature are we using when we add 
viscous damping to a Hookian spring to obtain the 
differential equation 

 

as a model? The damping term is supposed to model 
a force due to friction. But what is friction? There are 
only two fundamental forces in classical physics and 
only four known forces in modern physics. Friction is 
not a nuclear force and it is not due to gravitation. 
Thus, at a fundamental level it must be a 
manifestation of electromagnetism. Is it possible to 
derive the linear form of viscous damping from 
Maxwell‘s laws? This discussion could become very 
philosophical! 

The important point for us is an appreciation that the 
law of motion—so basic for our understanding of the 
way the universe works is expressed as an ordinary 
differential equation. Newton's law, the classical force 
laws, and the constitutive laws are the origin of 
ordinary differential equations. Apparently, as Newton 
said. ―Solving differential equations is useful.‖ 
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