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Abstract – The calculation of the cohesive energy is based on the realization that the free ion one electron 
wave functions of Hartree and Hartree Fock do not form an orthonormal set of wave functions when the 
ions come as close as they are in the solid. The correct value of the cohesive energy can be obtained as 
the lowest eigen value of the complete Hamiltonian of the solid.The evaluation of this value demands a 
knowledge of the true wave functions for the solids as a whole. These wave functions can be expressed as 
a linear combination of the free ion wave functions by imposing the condition of orthonormality of the 
linear combinations we can obtain the true wave functions corresponding to the solid. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Suppose ψμ represents the free ion wave functions. 
Let us define a function Sμν by 

 

Where μand ν are the quantum numbers of the 
electron wave functions centered at various ions and 
δμν is known as kronecker symbol. Obviously Sμν 
measures the deviation of the overlap integral of 
wave function φμfrom orthonormality. We shall, 
however, for convenience call Sμν as the overlap 
integrals. Usually one considers overlap between 
nearest neighbours only hence ν and μ refers to 
electron wave functions centered at nearest 
neighbouring ions. It can now show that a linear 
combination of φμ is the form, 

 

Where I is the unit matrix of power order.φμ as given 
by equation (3.2) from an exactly orthonormal set. If 
we retain terms only up to the second degree in Sμν 
this function will be  

 

The wave functions, φμ lead to a cohesive energy 
expression which can be broadly divided in to three 
distinct parts, 

 

ΦC is the classical electrostatic energy of the lattice, 
which is obtained by considering the ions as point 
charges. 

 

Where l and k are respectively the cell and basis 
indices, Zk = ±1 and ∑' denotes a summation, where 
the terms (lk) = (l'k') are omitted. ΦR collects terms 
which depend only on the distance between two 
neighbouring nuclei and give the main contribution to 
the repulsive lattice potential. 

 

ΦT corresponds to a three body potential, 

 

 

The double prime over the third sigma indicates that 
the term ( l''k'')=(lk) or  ( l'k') are omitted and G 
represents the composite index (lk).The matrix 
element (ν| G |μ) are given by, 

 

and in the S
2
 approximation Pμν is equal to  
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The expression (3.8) for three body potential has 
calculated by Lowndin as well as by Lundquvist 
[33]using different methods Lowdin expands the 
integral in spherical harmonics with the origin at 
lattice point of the positive ion based on the method 
which was first introduced by Landshoff[33-39 ]for 
NaCl.The expression coverage rapidly if the cation is 
small in size, but for large size cations the overlap 
product ψ

*
νψμ will no longer be localized around the 

nucleus of the cations and for crystals with large 
cations the convergence of the expansion will be 
rather slow. Lundquist has proposed a modification 
according to which the integral is expanded in 
spherical harmonics with the origin at the centre of 
gravity of the overlap density,ψ

*
νψμ.For NaCl this 

expansion seems to converge rapidly and it is a good 
approximation to neglect the first term. However, the 
first term will be rather a complicated function of the 
relative coordinates of the three nuclei because each 
pair of overlapping orbitals has its own centre of 
gravity, the coordinates of which will appear in the 
formulae. In a later work of Lundqvist evaluate the 
matrix elements (ν| G |μ)by evaluating them over the 
positive and negative ion spaces reported by arbitrary 
planes perpendicular to the lines joining these 
neighbouring ions. This approach simplifies the 
calculations considerably and reduces the three body 
potential to the form    

 

Where fk is a function related to Sμν and Z''k is the 
charge on the k'' ion in the free state.The cohesive 
energy φ becomes 

 

On simplifying expression (3.11), the binding energy 
Φ  per unit cell is obtained as, 

 

A classical interpretation of this energy has been 
given by Cohran [55] and by Verma [13 ], according 
to which the function f( r) determines the amount of 
charge transferred from negative to positive ion due 
to the overlap of electron clouds so that it can be 
considered as a charge transfer parameter. 

DESCRIPTION OF SHELL MODEL 

An ionic crystal was initially considered tom be 
composed of spherical non-polarizable point ions held 
together by long range attractive and short range 
repulsive forces. This picture of point ion or the rigid-
ion model explains the cohesive properties of ionic 

crystals with considerable success but does not 
explain their dielectric behaviour. The rigid ion model 
predicts the electronic dielectric constant ε∞ for all the 
ionic crystals equal to one, while the experimental 
values for the most of the ionic solids lie between 2 
and 3.This situation demonstrates the invalidity of the 
rigid ion model. The electronic polarizability and the 
observed dielectric behaviour of ionic and partially 
covalent crystals can be described plausibly well with 
the help of the shell model. In the shell mode, ions 
are regarded as having an outer shell of loosely 
bound electrons and an inner core composed of the 
nucleus plus tightly bound inner electrons. The shell 
in an ideal sense is assumed to be spherical, mass –
less, non-deformable and isotropically coupled with 
the core by a spring of force constant k . Thus, the 
shell charge Y and the force constant k are the only 
two parameters in terms of which this model can be 
defined. 

Under the application of an electric field E=E0e
iωt

 the 
equation of motion of the shell with respect to the 
core can be written as, 

 

Where‗d‘ is the displacement between the centers of 
the core and the shell.m and e are the electronic 
mass and charge, respectively. An expression for 
the polarizability is now written in the form, 

 

For the frequencies where (ω
2
mY/k)<<1,then  

 

This equation in fact, is valid for the ions in free 
state. Y and K can be calculated by knowing the free 
state polarizability and its dispersion. When the ions 
are considered in a crystalline form the equation of 
motion of ion shells can be written as, 

 

And for all the cores  

 

Where ‗A‘ is the repulsive force constant between 
the shells per ion pair and Δ= Δ+ - Δ- is the relative 
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displacement of ions of masses M+ and M- of the 
cores, and Z is the valency of the ions. With the help 
of equations (3.16) through we can write, 

 

Where μ is the reduced mass per ion pair. The dipole 
moment per ion pair is  

 

For polarizability per ion pair one can obtain from 
equations (3.16),(3.17),(3.20) and  (3.21) 

 

In the limit ω→∞, equation (3.22) will yield the 
following expression for electronic polarizability 
(Lorentz-Lorentz relation), 

 

The infrared absorption frequency ωt occurs when 
there is a definite polarization without application of a 
field. For transverse wave there is no depolarizing 
field and so we have, 

 

Now equation(3.22) yields, with the use of equations 
(3.23)and (3.24) ,the relation  

 

Equation (3.23) to (3.25) lead to the following relation 
for the effective charge parameter.  

 

Values of (e*/e) obtained from (3.26) using the shell 
model parameters have been found to present closer 
agreement with experimental data. 

THREE BODY FORCE SHELL MODEL 

The simple shell model as described in earlier section 
does not go beyond the rigid ion model as far as the 
elastic constants are concerned .It should be 
emphasized that the shell model as well as rigid ion 
model ion both consider the interactions in terms of 
two body or pair wise potentials. However, the 

consideration of two body potentials is not 
satisfactory for explaining the breakdown of the 
Cauchy‘s relation between the constants (C12=C44).It 
is therefore to induce three body interactions within 
the framework of the shell model in order to develop a 
more sophisticated model which is satisfactory from 
explaining the dielectric as well as elastic properties 
of crystals. 

Verma and Singh [183] have developed a three body 
force shell model (TSM) based on Lindquist‘s 
expression for the lattice potential. The model uses a 
function f(a)of the nearest neighbour separation 
connected with the overlap integrals of electron wave 
functions  and its space derivative (df/da) as 
parameters, in addition to the usual parameters of the 
simple shell model [112-156 ].On classical 
considerations one can show that the TSM takes 
account of the charge transfer between neighbouring 
ions in addition to the dipoles included on the ion 
sites, while the simple shell model accounts only for 
the induced dipoles .An error in the formulation of the 
TSM has been pointed out by Agrawal and 
Verma[184] which concerned the definition of shell 
and core charges. By redefining the shell and core 
charges suitably, it is still possible to obtain the basic 
equations of the model as they have been described 
before but the meaning of the electrical and distortion 
Polarizabilities become somewhat different. It is 
therefore necessary to reformulate the model 
correctly and to investigate the extent to which this 
correction affects the results obtained earlier in 
various lattice dynamical studies [156]. 

Cochran [55 ] has shown that the TSM is equivalent 
to another variation of the shell model [113].A simple 
classical derivation of the Lundqvisite‘s expression for 
the lattice potential of ionic solids and a proof of the 
equivalence of the TSM and BSM have been 
obtained by Verma [182] by reinterpreting an analysis 
of the breathing motion of the shells in the BSM 
presented by Basu and Sengupta [ 41].This 
interpretation leads to charge transfer implied in 
Lundqvist‘s lattice potential and is in agreement with 
Cochran‘s analysis of the TSM.Let us designate the 
ions in an ionic lattice structure with two atoms per 
unit cell by the usual symbol(l,k), where the cell index 
l is the integral triplet(l1,l2, l3) and the basis index 
k=1,2.The charge densitydistribution ρlk around an ion 
can be expressed as a function of position relative to 
corresponding nucleus, 

 

In view of the translation symmetry,   will be 
independent of l in the ideal undistributed state of the 
lattice and may be considered as a function of the 
scalar distance from the corresponding nucleus, 

 



 

 

Poonam* 

 

w
w

w
.i
g

n
it

e
d

.i
n

 

759 
 

 Study of Dielectric Properties of Covalent Crystals and Polarization Models 

In the state of vibration, the ions move out of their 
equilibrium configurations causing a change in the 
charge density function which can now be expressed 
as a series in spherical harmonics. Thus, 

 

The first term represents an isotropic scalar 
deformation of the charge cloud, the second a dipole 
deformation, and so on. The simple shell model 
accounts for only the second term in the expansion. If 
we retain only the first two terms in the equation 
(3.29) and assume that the charge on the ion remains 
unaltered during the vibrations, we obtain 

 

Equation (3.30)is identically satisfied by a simple 
function  

 

Where g( r) is an arbitrary function and alk is a 
parameter.  

By choosing g ( r)= ρ
0

k (  r  ),we obtains, 

 

Where r'=r+alk(r), Equation (3.32) represents the 
breathing motion implied in the breathing shell model. 

This interpretation of the breathing motion of the 
shells depend entirely on the result(3.30),which is 
valid only if the upper limit of integration on the 
charge density distribution is extended to infinity. In a 
solid the ions (or atoms) are fairly close together and 
the total space can be divided among various ions by 
suitably drawn dividing surfaces. In an ionic solid 
where the charge density distribution is to a large 
extent spherically symmetric around each nucleus, 
the positive and negative ions spaces can be 
conveniently divided in spheres of ionic radii rk 
centered at the corresponding lattice points. The 
charge belonging to k type ions will therefore be 
determined by, 

 

Where the upper limit is mow rk instead of ∞.Even in 
a static lattice the proximity of the ions will cause a 
deformation of a charge clouds owing to the overlap 
of electron wave functions.It is this deformation that 
that been considered by Lundqvist and is thus implied 
in the TSM.Let us define the original charge on the 
ion in absence of the deformation f0( r) to be Zk; 

 

Substituting in equation in (3.33)in the expression 
(3.31) with g(r)=ρ

0
k and assuming alk to be small,we 

obtain for the charge on a k-type ion, 

 

Where 

 

The charge neutrality over the unit cell demands 

 

Since  is a parameter which will vary with the 
proximity of neighbouring ions, equation (3.36) 
implies 

 

It appears as through a charge  is transferred 
from the negative ion to the positive ion of the same 
cell. In effect, each ion will have a charge 

transferred to it from all its neighbours so that  can 
be supposed to be the sum of such transfer. If we 
neglect overlap between ions farther than the first, 

 will not have not any contribution from second 
and higher neighbours. In the static lattice we can 
therefore consider this parameter to be independent 
not only of k but also of l. Denoting the charge on 
the positive ion by Z(=|Zk|),we can write the charge 
on the ions as ±Z[1+a( r)]. 

The coulomb energy per unit cell of this modified 
charge system will be 

 

And if we neglect the square of a (r) we can write 
the energy per unit cell of the ionic solid as, 

 

Where V(r)is the overlap potential and Z a  
to obtain the expression given by Lundqvist for Φ. 
The coulomb pair potential coupling two ions at (l m 
k) and (l' m k') will be, 
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The first term is a central two-body potential identical 
with the conventional coulomb potential of the rigid 
ion model. The second term is also of the same type 
but its magnitude depends on f ( r) which in turn 
depends on the proximity of neighbouring ions. Thus 
this potential contains the coordinates of atoms at 
(l,k) ,(l'k') ,and all the nearest–neighbouring states of 
(l,k).In view of the dependence of this potential  on 
the coordinates of three different ions of the solids, it 
is termed a three body potential. Clearly, the three 
body potential derived quantum mechanically by 
Lundqvist[33] implies a charge transfer between 
neighbouring ions. 
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