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Abstract – This article is a survey of the recent results that concern real functions and whose solutions or 
statements involve the use of set theory. The choice of the topics follows the author's personal interest in 
the subject, and there are probably some important results in this area that did not make it to this survey. 
Most of the results presented here are left without proofs. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTRODUCTION 

The development of set theory created a new trend in 
mathematical research. On one hand it produced 
strong techniques such as transfinite recursion to 
solve long-standing open problems, and on the other 
hand the new theories enabled us to prove that it is 
impossible to answer certain questions; that is the 
usual axioms of set theory. Proving these so called 
consistent and independent statements is a very active 
and rapidly growing area of mathematics, specifically 
of analysis as well. My study presents a collection of 
my results of this type from the field of real analysis. 

The study of real functions has played a fundamental 
role in the development of mathematics over the last 
three centuries. The seventeenth century discovery of 
calculus by Newton and Leibniz was largely due to 
increased understanding of the behavior of real 
functions. The birth of analysis is often traced to the 
early nineteenth century work of Cauchy, who gave 
precise definitions of concepts such as continuity and 
limits for real functions. 

Convergence problems while approximating real 
functions by Fourier series gave rise to both the 
Riemann and Lebesgue integrals. Cantor developed 
his set theory in an effort to answer uniqueness 
questions about Fourier series. During this time, 
different techniques have been used as the theory 
behind them became available. For example, after 
Cauchy, various limiting operations such as pointwise 
and uniform convergence were studied, giving rise to 
various approximation techniques. At the turn of this 
century, measure theoretic techniques were exploited, 
leading to stochastic convergence ideas in the 1920's. 
Also, at about the same time topology was developed, 
and its applications to analysis gave rise to functional 
analysis. In recent years, a new research trend has 
appeared which indicates the emergence of a yet 
another branch of inquiry that could be called set 
theoretic real analysis. 

Set theoretic real analysis is closely allied with 
descriptive set theory, but the objects studied in the 
two areas are different. The objects studied in 
descriptive set theory are various classes of (mostly 
nice) sets and their hierarchies, such as Borel sets or 
analytic sets. Set theoretic real analysis uses the 
tools of modern set theory to study real functions and 
is interested mainly in more pathological objects. 
Thus, the results concerning subsets of the real line 
(like the series of studies on \small" subsets of R, or 
deep studies of the duality between measure and 
category) are considered only remotely related to the 
subject.  

Set theoretic real analysis already has a long history. 
Its roots can be traced back to the 1920's, where 
powerful new techniques based on the Axiom of 
Choice (AC) and the Continuum Hypothesis (CH) 
can be seen in many papers.  

The new emergence of the field was sparked by the 
discovery of powerful new techniques in set theory 
and can be compared to the parallel development of 
set theoretic topology during the late 1950's and 
1960's. In fact, it is a bit surprising that the 
development of set theoretic analysis is so much 
behind that of set theoretic topology, since at the 
beginning of the century the applicability of set 
theory in analysis was at least as intense as in 
topology. 

This, however, can be probably attributed to the 
simple fact, that in the past half of a century there 
were many mathematicians that knew well both 
topology and set theory, and very few that knew well 
simultaneously analysis and set theory. 

In analysis it is necessary to take limits; thus one is 
naturally led to the construction of the real numbers, 
a system of numbers containing the nationals and 
closed under limits. When one considers functions it 
is again natural to work with spaces that are closed 
under suitable limits. For example, consider the 
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space of continuous functions C[0,1]. We might 
measure the size of a function here by 

 

(There is no problem defining the integral, say using 
Riemann sums). 

But we quickly see that there are Cauchy sequences 
of continuous functions whose limit, in this norm, are 
discontinuous. So we should extend C[0, 1] to a space 
that is closed under limits. It is not at first even evident 
that the limiting objects should be functions. And if we 
try to include all functions, we are faced with the 
difficult problem of integrating a general function. 

The modern solution to this natural issue is to 
introduce the idea of measurable functions, i.e. a 
space of functions that is closed under limits and tame 
enough to integrate. The Riemann integral turns out to 
be inadequate for these purposes, so a new notion of 
integration must be invented. In fact we must first 
examine carefully the idea of the mass or measure of 

a subset  which can be thought of as the 

integral of its indicator function  if  and = 0 
if  

3. Fourier series. More classical motivation for the 
Lebesgue integral come from Fourier series. 

Suppose  is a reasonable function. We 
define the Fourier coefficients of  by 

 

Here the factor of  is chosen so that 

 

We observe that if 

 

then at least formally an = bn  (this is true, for 
example, for a finite sum). 

This representation of  as a superposition of sines 
is very useful for 

applications. For example,  can be thought of as a 
sound wave, where an measures the strength of the 
frequency n. 

Now what coefficients an can occur? The orthogonality 
relation implies that 

 

This makes it natural to ask if, conversely, for any an 

such that  there exists a function with 
these Fourier coefficients. The natural function to try is 

 

But why should this sum even exist? The functions 

sin(nx) are only bounded by one, and  is 

much weaker than  

One of the original motivations for the theory of 
Lebesgue measure and integration was to refine the 
notion of function so that this sum really does exist. 

The resulting function however need to be 
Riemann integrable! To get a reasonable theory 
that includes such Fourier series, Cantor, Dedekind, 
Fourier, Lebesgue, etc. were led inexorably to a re-
examination of the foundations of real analysis and 
of mathematics itself. The theory that emerged will 
be the subject of this course. 

SET THEORY  

The foundations of real analysis are given by set 
theory, and the notion of cardinality in set theory, as 
well as the axiom of choice, occur frequently in 
analysis. Thus we begin with a rapid review of this 
theory. We then discuss the real numbers from both 
the axiomatic and constructive point of view. Finally 
we discuss open sets and Borel sets. 

In some sense, real analysis is a pearl formed 
around the grain of sand provided by paradoxical 
sets. These paradoxical sets include sets that have 
no reasonable measure, which we will construct 
using the axiom of choice. The axioms of set theory. 
Here is a brief account of the axioms. 

• Axiom I. (Extension) A set is determined by 
its elements. That is, if 

 and vice-versa, 
then A = B. 

• Axiom II. (Specification) If A is a set then 

 is also a set. 

• Axiom III. (Pairs) If A and B are sets then so 

is {A.B}. From this axiom and we 
can now form {0,0} = {0}, which we call 1; 
and we can form {0,1}, which we call 2; but 
we cannot yet form {0,1,2}. 
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• Axiom IV. (Unions) If A is a set, then 

 is also a set. From this 
axiom and that of pairs we can form 

 Thus we can define 

 and form, for example, 7 = 
{0,1,2,3,4,5,6}. 

• Axiom V. (Powers) If A is a set, then 

 is also a set. 

• Axiom VI. (Infinity) There exists a set A such 

that  and  whenever  The 
smallest such set is unique, and we call it 

 

• Axiom VII (The Axiom of Choice): For any set 

A there is a function  such that 

 for all  

Cardinality. In set theory, the natural numbers N are 

defined inductively by  and  
Thus n, as a set, consists of exactly n elements. 

We write  to mean there is a bijection 
between the sets A and 13: in other words, these sets 
have the same cardinality. A set A is finite if  for 

some it is countable if A is finite or ; 
otherwise, it is uncountable. 

A countable set is simply one whose elements can be 

written down in a (possibly finite) list,  When 

 we say A is countably infinite. 

CARDINAL FUNCTIONS IN ANALYSIS 

The important recent developments in set theoretical 
analysis concern the cardinal functions that are 
defined for different classes of real functions. These 
investigations seem to be analogous to those 
concerning of cardinal functions in topology from the 
1970‘s and 1980‘s. (See [81, 77. 82, 152].) They are 
also related to the deep studies of cardinal invariants 
associated with different small subsets of the real line. 
(For a summary of the results concerning cardinals 
related to the measure and category see [65] or [8]. 
For a survey concerning cardinals associated with the 
thin sets derived from harmonic analysis see [18].) 

The first group of funct ions is motivated by the notion 
of countable continuity and was introduced in 1991 by 
J. Cichori, M. Morayne, J. Pawlikowski, and S. Solecki 
in [22]. More precisely, they define the decomposition 

function  for arbitrary families  and 

 where stands for the set of all 
functions from X to Y. 

 

where  denotes the family of all coverings of  with 

at most many sets. In particular, if stands for the 

family of all continuous functions (from subsets of  

into ) then  is countably continuous if and 

only if  

The motivation for this definition comes from a 
question of N. N. Luzin whether every Borel function is 
countable continuous. This question was answered 
negatively by P. S. Novikov and was subsequently 
generalized by Keldys (in 1934), and S. I. Adian and P. 
S. Novikov [l] (in 1958). The most general result in this 
direction was obtained in late 1980‘s by M. Laczkovich 
(see Cichori, Morayne) who proved, in particular, that 

 for every  

One of the most interesting results from the paper [22] 
is the following theorem. 

Theorem 4.1 (Cichori, Morayne, Pawlikowski, 
Solecki). 

 

where is the smallest cardinality of a 

covering of  by meager sets, and d, the 
dominating number, is the smallest cardinality of a 
dominating family, i.e., such that for every  

there exists  with  

It has been also shown by J. Steprans and S. Shelah 
that none of these inequalities can be replaced by 
the equation. 

Theorem 4.2 (Steprans [147]). It is consistent with 
ZFC that 

 

Theorem 4.3 (Shelah, Steprans [134]). It is 
consistent with ZFC that 

 

There are also some interesting results concerning 

the value of  where is the class of all 
(partial) differentiable functions. It has been proved 
by Morayne (see Steprans [149, Thin 6.1]) that 

Theorem 4.4 (Morayne [149, Thm 

6.1]).  

Also, Steprans proved that 

Theorem 4.5 (Steprans [149]). It is consistent with 
ZFC that. 
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However, the relation between numbers , 

 and  for  is unclear. 

In the same direction, K. Ciesielski recently noticed 

that (obviously)  and that it is 
the best that can be said in ZFC. 

MEASURABLE FUNCTIONS 

In this section we begin to study the interaction of 
measure theory with functions 011 the real line. 

Theorem 4.1 Given  the following conditions 
are equivalent. 

•  is measurable for all  

•  is measurable for all open sets U. 

•  is measurable for all open Borel sets 
B. 

A function is measurable if any (and hence all) of 
these conditions hold. The first condition is the easiest 
to check. 

Proof. Let  be the collection of sets  

such that  is measurable. Then A forms a a-

algebra. Since the sets generate the Borel sets 

as a -algebra, . The implications 
 (1) are immediate. 

First examples: continuous, monotone and indicator 

functions. Let  denote the space of all 

continuous functions on  and let  denote the 
set of all measurable functions 011 R. Clearly we have 

, since open sets are measurable. 

In addition  contains monotone functions, since for 
these the preim age of an interval is another interval. 

The indicator functions  of any measurable set is 
also easily shown to be measurable. 

Algebraic structure. We now examine which operations 
we can form to make new measurable functions out of 

existing ones. It is well-known that  is an algebra, 

meaning if  then so are  and  

 

Theorem 4.2 The space  is an algebra, containing 
the continuous functions. 

Proof. If  is continuous and U is open, then  is 

open, and hence measurable. Thus  It 

is clear that  is closed under scalar multiplication. 

The tricky part is addition. Suppose  and 

 Then we can find a rational number 

 such that  and  (Just 

take between  and  and of course, 

this condition implies  Thus we have: 

 

This expresses the set on the left as a countable union 
of measurable sets, so it is measurable. 

As for products, we note that , 
so it suffices to show that  is closed under 

 This follows from the fact that 
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