On Parametric S-Metric Spaces and Fixed-Point Theorems for R-Weakly Commuting Mappings

Raivir Kaur¹* Teiwant Singh² Saurabh Manro³

^{1,2} Department of Mathematics, Desh Bhagat University, Mandi, Gobindgarh

Abstract - In this paper, we prove some common fixed point theorems for variants of R-weakly commuting mappings, R-weakly commuting of type ${}^{(A_j),(A_i)and(P)}$ in parametric S-metric spaces.

Keywords: parametric S-metric space; R-weakly commuting mappings; R-weakly commuting mappings of type $(A_f),(A_g)$ and (P)

-----X-----X

1. INTRODUCTION

In 1922 Stefan Banach proved a common fixed point theorem, which ensures the existence and uniqueness of a fixed point under appropriate conditions. This result of Banach is known as Banach fixed point theorem or contraction mapping principle.

These contractive conditions have been used in various fixed-point theorems for some generalized metric spaces.

Recently, the notion of an S-metric has been studied by some mathematicians. This notion was introduced by Sedghi et al. in 2012 [5] as follows,

Definition 1.1[5]Let X be a non-empty set and let S: $X \times X \times X \to [0,\infty)$ be a function. Then S is called an S-metric on X if.

(S1)
$$S(a,b,c) = 0$$
 if an only if $a = b = c$,

(S2) $S(a,b,c) \le S(a,a,x) + S(b,b,x) + S(c,c,x)$, for each $a,b,c,x \in X$. The pair of (X,S) is called an Smetric space.

Definition 1.2 [3]Let X be a non-empty set and let $P: X \times X \times (0, \infty) \rightarrow [0, \infty)$ be a function.

P is called a parametric metric on X if,

(P1)
$$P(a,b,t) = 0$$
 if and only if $a = b$,

(P2)
$$P(a,b,t) = P(b,a,t),$$

 $P(a,b,t) \le P(a,x,t) + P(x,b,t),_{for}$ (P3) $a,b,x \in X$ and all t > 0. The pair of (X,P) is called a parametric metric space.

Definition 1.3 [3]Let (X,P) be a parametric metric space andlet $\{a_n\}$ be a sequence in X:

- $\left\{a_{n}\right\}$ converges to $^{\mathcal{X}}$ if and only if there (1) exist $n_0 \in \mathbb{N}$ such that $P(a_n, x, t) < \varepsilon$, for all $n \ge n_0$ and all t >that $\lim_{i \text{s}, n \to \infty} P(a_n, x, t) = 0.$
- $\left\{a_{\scriptscriptstyle n}\right\}$ is called a Cauchy sequence if, for all (2) $\lim_{t > 0, n,m \to \infty} P(a_n, a_m, t) = 0.$
- (X,P) is called complete if every Cauchy (3) sequence is convergent.

Definition 1.4Let X be a non-empty set and let $P_s: X \times X \times X \times (0, \infty) \rightarrow [0, \infty)_{\text{be}}$ function. $P_{\mathcal{S}}$ is called a parametric S-metric on X if, (PS1) $P_s(a,b,c,t) = 0$ if and only if a = b = c, (PS2) $P_{s}(a,b,c,t) \leq$

$$F_S(a,b,c,t) \leq$$

$$P_{S}(a,a,x,t) + P_{S}(b,b,x,t) + P_{S}(c,c,x,t)$$
, for each

³ Department of Mathematics, Thapar University, Patiala

 $a,b,c\in X$ and all t>0. The pair (X,P_S) is called a parametric S-metric space.

Lemma 1.1Let $(X,P_{\mathbb{S}})$ be a parametric S-metric space.then we have

 $P_{\scriptscriptstyle S}(a,a,b,t) = P_{\scriptscriptstyle S}(b,b,a,t), \quad \text{for each} \quad a,b \in X \quad \text{and} \quad \text{all} \quad t>0.$

Proof: using (PS2), we obtain,

$$P_{S}(a,a,b,t) \le 2P_{S}(a,a,b,t) + P_{S}(b,b,a,t)$$

= $P_{S}(b,b,a,t)$,

$$P_{S}(b,b,a,t) \le 2P_{S}(b,b,b,t) + P_{S}(a,a,b,t)$$

$$P_S(a,a,b,t)$$
.

From the above inequalities, we have

$$P_{S}(a,a,b,t) = P_{S}(b,b,a,t).$$

Definition 1.5Let (X,P_S) be a parametric S-metric space and let ${a_n}$ be a sequence in X:

(1) $\begin{cases} a_n \\ \text{converges to} \end{cases} \text{ only if there exists}$ $n_0 \in_{\mathbb{N}} \text{ such that } P_S(a_n, a_n, x, t) \\ \underset{n \to \infty}{\lim} P_S(a_n, a_n, x, t) = 0.$ that is $\sum_{n \to \infty} P_S(a_n, a_n, x, t) = 0.$

 $\lim_{n\to\infty}a_n=x.$ It is denoted by

(2) ${a_n \brace t > 0}$ is called a Cauchy sequence if, for all

$$\lim_{n \to \infty} P_S(a_n, a_n, a_m, t) = 0$$

(3) (X, P_S) is called complete if every Cauchy sequence is convergent.

Lemma 1.2Let (X,P_S) be a parametric S-metric space. If $\left\{a_n\right\}$ converges to $^{\mathcal{X}}$, then $^{\mathcal{X}}$ is unique.

Proof: $\lim_{n\to\infty} a_n = x$ and $\lim_{n\to\infty} a_n = y$ with $x\neq y$. Then there exists $n_1,n_2\in\mathbb{N}$ such that

$$P_{S}(a_{n}, a_{n}, x, t) < \frac{\varepsilon}{2}$$

$$P_{S}(a_{n}, a_{n}, y, t) < \frac{\varepsilon}{2}$$

For each ϵ > 0, all t > 0, and n > n_1,n_2 if we take $n_0=\max\left\{n_1,n_2\right\}$ then using (PS2) and lemma 1.1 , we get

$$P_S(x, x, y, t) \le 2P_S(x, x, a_n, t) + P_S(y, y, a_n, t)$$

$$\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

For each $n \ge n_0$. Therefore $P_S(x, x, y, t) = 0$ and x = y.

2. FIXED POINT RESULT FOR *R*-WEAKLY COMMUTING MAPPINGS

In this section, we prove some fixed point results for R-weakly commuting mappings in parametric S-metric space.

Definition 2.1A pair (f,g) of self-mappings of a parametric S-metric space (X,P_S) is said to be R-weakly commuting at a point $a \in X$ if

 $P_{S}(fga,fga,gfa,t) \le R P_{S}(fa,fa,ga,t)$ for some R > 0.

Definition 2.2 A pair (f,g) of self-mappings of a parametric S-metric space (X,P_S) is said to be point wise R-weakly commuting on X if given $a \in X$, there exists R >0 such that

$$P_{S}(fga, fga, gfa, t) \leq R P_{S}(fa, fa, ga, t)$$

Theorem 2.1 Let (X, P_S) be a complete parametric S-metric space and let f and g be R-weakly commuting self-mapping of X satisfying the following conditions:

- (i) $f(X) \subseteq g(X)$;
- (ii) f or g is continuous;

(iii)
$$P_{S}(fa,fa,fb,t) \leq q \ P_{S}(ga,ga,gb,t) \ , \qquad \text{for}$$

$$\text{every } a,b \in X \text{ and } 0 \leq q < 1.$$

Then $\,^f$ and g have a unique fixed point in $\,^X$.

Proof: Let a_0 be an arbitrary point in X. By (i) one can choose a point $a_1 \in X$ such that $fa_0 = ga_1$. In general choose a_{n+1} such that $b_n = fa_n = ga_{n+1}$.

Now we show that ${b_n}$ is a P_S - Cauchy sequence in X. For proving this we take $a=a_n,b=a_{n+1}$ in (iii), we have

$$P_{S}(fa_{n}, fa_{n}, fa_{n+1}, t) \le q P_{S}(ga_{n}, ga_{n}, ga_{n+1}, t) = q P_{S}(fa_{n-1}, fa_{n-1}, fa_{n}, t)$$

Continuing in the same way, we get

$$P_{S}(fa_{n}, fa_{n}, fa_{n+1}, t) \le q^{n} P_{S}(fa_{0}, fa_{0}, fa_{1}, t)$$

This implies,

$$P_{S}(b_{n},b_{n},b_{n+1},t) \leq q^{n}P_{S}(b_{0},b_{0},b_{1},t)$$

Therefore, for all $n, m \in \mathbb{N}, n < m$.

$$P_{S}(b_{n}, b_{n}, b_{m}, t) \leq P_{S}(b_{n}, b_{n}, b_{n+1}, t) + P_{S}(b_{n+1}, b_{n+1}, b_{n+2}, t) + \dots + P_{S}(b_{m-1}, b_{m-1}, b_{m}, t)$$

$$\leq (q^n + q^{n+1} + \dots + q^{m-1}) P_s(b_0, b_0, b_1, t)$$

$$\leq (q^n + q^{n+1} + \dots) P_s(b_0, b_0, b_1, t)$$

$$= \frac{q^{n}}{(1-q)} P_{S}(b_{0}, b_{0}, b_{1}, t) \to 0 \text{ as } n \to \infty.$$

Thus $\{b_n\}$ is a P_S - Cauchy sequence in X. since (X,P_S) is complete S-metric space, therefore, there exists a point $c\in X$ such that $\lim_{n\to\infty}b_n=\lim_{n\to\infty}ga_n=\lim_{n\to\infty}fa_n=c$. Let us suppose that the mapping f is continuous. Therefore $\lim_{n\to\infty}fga_n=\lim_{n\to\infty}ffa_n=fc$.

Since f and g are R-weakly commuting,

$$P_{S}(fga_{n}, fga_{n}, gfa_{n}, t) \leq R P_{S}(fa_{n}, fa_{n}, ga_{n}, t)$$

where R > 0.

On letting
$$n \to \infty$$
 we get $\lim_{n \to \infty} gfa_n = \lim_{n \to \infty} fga_n = fc$.

Now we prove that c=fc. Suppose $c \neq fc$ then $P_{S}(c,fc,fc,t)_{>0}$

On setting $a = a_n, b = fa_n$ in (iii), we have

$$P_{S}(fa_{n}, fa_{n}, ffa_{n}, t) \leq q P_{S}(ga_{n}, ga_{n}, gfa_{n}, t)$$

Letting limit as $n \to \infty$ we get

$$P_{S}(c,c,fc,t) \leq q P_{S}(c,c,fc,t) P_{S}(c,c,fc,t)$$

Is a contradiction.

Therefore c=fc since $f(X)\subseteq g(X)$ we can find $c_1\in X$ such that $c=fc=gc_1$

Now put $a = fa_n, b = c = c_1$ in (iii), we have

$$P_{S}(ffa_{n}, ffa_{n}, fc_{1}, t) \leq q P_{S}(gfa_{n}, gfa_{n}, gc_{1}, t)$$

Taking limit as $n \to \infty$ we get

$$P_{S}(fc, fc, fc, fc_{1}, t) \le q P_{S}(fc, fc, gc_{1}, t) = q$$

 $P_{S}(fc, fc, fc, fc, t) = 0$

Which implies that $fc=fc_1$ i.e., $c=fc=fc_1=gc_1$. Also by using the definition og R-weakly commutativity,

$$P_{S}(fc, fc, gc, t) = P_{S}(fgc_{1}, fgc_{1}, gfc_{1}, t) \le R$$

 $P_{S}(fc_{1}, fc_{1}, gc_{1}, t) = 0$

Implies that fc = gc = c. Thus c is a common fixed point of f and g.

Uniqueness: assume that $d(\neq c)$ be another common fixed point of f and g.

Then
$$P_S(c,c,d,t)$$
 >0 and

$$P_{S}(c,c,d,t) = P_{S}(fc,fc,fd,t) \le q P_{S}(gc,gc,gd,t)$$

$$= q P_{S}(c,c,d,t) < P_{S}(c,c,d,t).$$

Which is a contradiction. Therefore c = d. Hence uniqueness follows.

Example 2.1 Let X = R and let the function $P_S: X \times X \times X \times (0, \infty) \rightarrow [0, \infty)$ be defined by

 $\begin{array}{ll} P_{\scriptscriptstyle S}(a,b,c,t) = g(t)(\big|a-b\big|+\big|b-c\big|+\big|a-c\big|_{\rm for} & {\rm each} \\ a,b,c \in R_{\rm and \ all} & t>_{\rm 0}, \ {\rm where} & g:(0,\infty) \to (0,\infty)_{\rm \ is} \ {\rm a} \\ {\rm continuous \ function.} & {\rm Then} & P_{\scriptscriptstyle S} \ {\rm is} \ {\rm a} \ {\rm parametric} \ {\rm S\text{-}metric} \\ {\rm and \ the \ pair} & (R,P_{\scriptscriptstyle S}) \ {\rm is} \ {\rm a} \ {\rm parametric} \ {\rm S\text{-}metric} \\ {\rm Define \ self\text{-}mappings} & f \ {\rm and} \ g \ {\rm on} \ X \ {\rm by} & fx=x \ {\rm and} \\ gx=2x-1, \ {\rm for \ all} & x \in X \ . \\ {\rm Here \ we \ note \ that}, \end{array}$

- (i) $f(X) \subseteq g(X)$;
- (ii) f is continuous on X;

(iii)
$$P_{\rm S}(fa,fb,fc,t) \leq q \ P_{\rm S}(ga,gb,gc,t) \,, \quad {\rm holds}$$
 for all $a,b,c \in X$, $\frac{1}{2} \leq q$ <1.

Further, the mappings f and g are R-weakly commuting. Thus, all conditions of the theorem 2.1 are satisfied and x = 1 is the unique common fixed point of f and g.

3. FIXED POINT RESULT FOR VARIANTS OF *R*-WEAKLY COMMUTING MAPPINGS BY USING WEAK

Reciprocal continuity

In this section, we prove some fixed point results for *R*-weakly commuting mappings by using weak reciprocal continuity in parametric *S*-metric space.

Definition 3.1 Apair (f,g) of self-mappings of a parametric S-metric space (X,P_S) is said to be

- (i) R-weakly commuting of type (A_g) if there exists some R>0 such that $P_S(ffa,ffa,gfa,t) \leq R P_S(fa,fa,ga,t)$, for all $a \in X$.
- (ii) R-weakly commuting of type (A_f) if there exists some R>0 such

that
$$P_S(fga,fga,gga,t) \leq R$$
 $P_S(fa,fa,ga,t)$, for all $a \in X$.

Definition 3.2 A pair (f,g) of self-mappings of a parametric S-metric space (X,P_S) is said to be R-weakly commuting of type (P) if there exists some R>0 such that

 $P_{\scriptscriptstyle S}(\mathit{ffa},\mathit{ffa},\mathit{gga},t) \leq R \ P_{\scriptscriptstyle S}(\mathit{fa},\mathit{fa},\mathit{ga},t)$, for all $a \in X$.

Theorem 3.1let f and g be weakly reciprocally continuous self-mappings of a complete parametric S-metric space (X,P_S) satisfying the following conditions:

- (i) $f(X) \subseteq g(X)$;
- (ii) $P_{S}(fa,fa,fb,t) \leq q \ P_{S}(ga,ga,gb,t) \ , \quad \text{for every } a,b \in X \ \text{and} \ 0 \leq q < 1.$

If f and g are either compatible or g-weakly commuting of type f or g-weakly commuting type f or g-weakly commuting of type f and g have a unique common fixed point.

Proof. Let a_0 be an arbitrary point in X. As $f(X)\subseteq g(X)$, therefore there exists a sequence of points $\left\{a_n\right\}$ such that $fa_n=ga_{n+1}$.

Define a sequence $\left\{b_{n}\right\}_{\text{in }X}$ by $b_{n}=fa_{n}=ga_{n+1}$. (3.1)

Sequence $\{b_n\}$ is P_S - Cauchy sequence in X . (the proof follows the same lines as in Theorem 2.1). Now since (X,P_S) is complete parametric S -metric space, therefore there exists a point $c\in X$ such $\lim_{n\to\infty}b_n=c$ that $\lim_{n\to\infty}b_n=c$

 $\lim_{n\to\infty}b_n=\lim_{n\to\infty}fa_n=\lim_{n\to\infty}ga_n=c \\ \text{. Suppose that } f \text{ and } g \text{ are compatible mappings. Weak reciprocal continuity of } f \text{ and } g \text{ implies that } \lim_{n\to\infty}fga_n=fc \\ \lim_{n\to\infty}fga_n=gc \\ \text{or } \text{. Let }$

$$\begin{split} \lim_{n\to\infty} P_{S}(fga_n,fga_n,gfa_n,t) &= 0\\ P_{S}(\lim_{n\to\infty} fga_n,fga_n,gc,t) &= 0\\ \lim_{n\to\infty} fga_n &= gc \end{split} \qquad \text{i.e.,}$$
 Hence,

$$\lim_{n\to\infty}fga_{n+1}=\lim_{n\to\infty}ffa_n=gc$$
 By (2.1) we have

Therefore by the use of (ii) we get

$$P_{S}(fc, fc, ffa_{n}, t) \leq q P_{S}(gc, gc, gfa_{n}, t)$$

Letting $n \rightarrow \infty$ on both sides we have

$$P_{S}(fc, fc, gc, t) \leq q P_{S}(gc, gc, gc, t) = 0$$

This gives fc=gc. Again compatibility of f and g implies commutativity at a coincidence point. Hence gfc=fgc=ffc=ggc. Now, we claim that fc=ffc. Suppose $fc\neq ffc$, then by using (ii) we obtain,

$$P_{S}(fc, fc, ffc, t) \le q P_{S}(gc, gc, gfc, t)$$

$$P_{\scriptscriptstyle S}(fc,fc,f\!fc,t) \leq q \ P_{\scriptscriptstyle S}(fc,fc,f\!fc,t)$$

Which is a contradiction Since $q \in [0,1)$. Hence, fc = ffc = gfc and fc is a common fixed point of f and g.

Next suppose that
$$\lim_{n \to \infty} fga_n = fc$$
. Then $f(X) \subseteq g(X)$ implies $fc = gu$ for some $u \in X$ and therefore $\lim_{n \to \infty} fga_n = gu$.

Compatibility of f and g implies, $\lim_{n\to\infty} gfa_n = gu$

By virtue of (3.1), we have $\lim_{n\to\infty}fga_{n+1}=\lim_{n\to\infty}ffa_n=gu.$

Using (ii), we get

$$P_{S}(fu, fu, ffa_{n}, t) \leq q P_{S}(gu, gu, gfa_{n}, t)$$

Letting $n \rightarrow \infty$ on both sides, we have

$$P_S(fu, fu, gu, t) \le q P_S(gu, gu, gu, t) = 0$$

This gives fu=gu. Compatibility of f and g yields fgu=ggu=ffu=gfu. Finally we claim that fu=ffu. suppose that $fu\neq ffu$, then by using (ii) we obtain,

$$P_{S}(fu, fu, ffu, t) \le q P_{S}(gu, gu, gfu, t)$$

$$P_{s}(fu, fu, ffu, t) \leq q P_{s}(fu, fu, ffu, t)$$

which again gives a contradiction, since $q \in [0,1)$. Hence fu = ffu = gfu. Therefore fu is a common fixed point of f and g.

Now suppose that f and g are g-weakly commuting type of f and g implies that f and g implies that f or f and g implies that f or f and g implies that f or f and f implies that f implies

$$P_{S}(ffa_{n}, ffa_{n}, gfa_{n}, t) \leq R P_{S}(fa_{n}, fa_{n}, ga_{n}, t)$$
 where $R > 0$.

Letting $n \rightarrow \infty$ on both sides, we have

$$P_{S}(\lim_{n\to\infty} ffa_n, ffa_n, gc, t) \le R P_{S}(c, c, c, t) = 0.$$

 $\lim_{n\to\infty} f\!f a_n = gc.$ This gives $\int_{-\infty}^{\infty} f\!f a_n = gc$ Also using (ii) we get

$$P_{S}(fc, fc, ffa_{n}, t) \leq q P_{S}(gc, gc, gfa_{n}, t)$$
.

Letting $n \to \infty$ on both sides we have

$$P_{S}(fc, fc, gc, t) \leq q P_{S}(gc, gc, gc, t) = 0$$

Hence we get fc = gc. Again by using *R*-weakly commutativity of type (A_g) ,

$$P_{c}(ffc, ffc, gfc, t) \leq R P_{c}(fc, fc, gc, t) = 0$$

Using (ii) we get

$$P_{S}(fc, fc, ffc, t) \le q P_{S}(gc, gc, gfc, t)$$

$$P_{s}(fc, fc, ffc, t) \leq q P_{s}(fc, fc, ffc, t)$$

A contradiction. Hence fc=ffc=gfc and fc is common fixed point of f and g .

 $\lim_{n\to\infty}fga_n=fc.$ Similarly, we an prove if

On the other hand if f and g are g-weakly commuting mappings of type f, then by following the similar steps as presented above, it can easily be proved that f is a common fixed point of f and g.

Finally now, suppose that f and g are g-weakly commuting of type (P). Weak reciprocal continuity of f and g implies that $\lim_{n\to\infty}fga_n=fc$ or $\lim_{n\to\infty}gfa_n=gc$. Let us assume that $\lim_{n\to\infty}gfa_n=gc$. Since pair (f,g) g-weakly commuting of type (P), we have

$$P_S(ffa_n, ffa_n, gga_n, t) \le R P_S(fa_n, fa_n, ga_n, t)$$

where $R > 0$.

Letting $n \rightarrow \infty$ on both sides we get,

$$P_{S}(\lim_{n\to\infty} ffa_{n}, \lim_{n\to\infty} ffa_{n}, \lim_{n\to\infty} gga_{n}, t) \leq R$$

$$P_{S}(c, c, c, t) = 0$$

This gives
$$P_{S}(\lim_{n\to\infty}ffa_{n},\lim_{n\to\infty}ffa_{n},\lim_{n\to\infty}gga_{n},t)=0$$

Using (i) and (3.1) we have

$$gfa_{n-1}=gga_n o gc$$
 as $n o\infty$ this gives, $ffa_n o gc$ $n o\infty$. Also, by using (ii) we have

$$P_{S}(fc, fc, ffa_{n}, t) \leq q P_{S}(gc, gc, gfa_{n}, t)$$

Letting $n \to \infty$ on both sides we get

$$P_{S}(fc, fc, gc, t) \le q P_{S}(gc, gc, gc, t) = 0$$

This implies that fc = gc. Again by using *R*-weakly commutativity of type (*P*),

$$P_{\rm S}({\it ffc},{\it ffc},{\it ggc},t) \leq R \ P_{\rm S}({\it fc},{\it fc},{\it gc},t) = 0 \ {\rm where} \ R{>}0 \ .$$

This yields
$$fc = ggc$$
. Therefore $ffc = fgc = gfc = ggc$.

Lastly, we claim that fc = ffc. Suppose that $fc \neq ffc$

Using (ii) we have

$$P_{S}(fc, fc, ffc, t) \leq q P_{S}(gc, gc, gfc, t)$$

$$P_{S}(fc, fc, ffc, t) \le q P_{S}(fc, fc, ffc, t)$$

Which is a contradiction. Therefore fc = ffc.

Hence fc = ffc = gfc and fc is a common fixed point of f and g.

This results holds good even if $\lim_{n\to\infty}fga_n=fc$ is $\lim_{n\to\infty}gfa_n=gc.$ considered instead of $\lim_{n\to\infty}gfa_n=gc.$

Uniqueness of the common fixed point in each of the three types of mappings can easily be obtained by using (ii).

The following example shows the validity of theorem 3.1.

Example 3.1 Let (X, P_S) be S-metric space, where X = [2,20] and for all $a,b,c \in X$ $P_S(|a-b|+|b-c|+|a-c|)$. Define $f,g:X \to X$ by $fa = \begin{cases} 2, & a=2 \text{ or } a > 5 \\ 6, & 2 < a \leq 5 \end{cases}$ and

$$ga = \begin{cases} 2, & a = 2 \\ 12, & 2 < a \le 5 \\ \frac{x+1}{3}, & a > 5 \end{cases}$$
 it can be easily verified that

(i)
$$f(X) \subseteq g(X)$$
;

(ii) f and g satisfies condition (ii) of theorem 3.1;

- (iii) $f \ \ \text{and} \ \ g \ \ \text{are} \ \ R\text{-weakly commuting of type}$ $\left(A_g\right)_{;}$
- (iv) f and g are weakly reciprocally continuous for $\{a_n\} = \{2\}_{\text{ or }} \{a_n\} = \left\{5 + \frac{1}{n}\right\}_{\text{ for each in X.}}$

Thus, f and g satisfy all the conditions of theorem 3.1 and have a unique common fixed point at x = 2.

REFERENCES

- 1. G. Jungck (1976). "Commuting mappings and fixed points," *Amer. Math Monthly*, vol.83, pp.261-263.
- 2. K. P. R. Rao, D.V. Babu, and E. T. Ramudu (2014). "Some unique common fixed point theorems in parametric s-metric spaces," *International journal of Innovative Research in Science, Engineering and Technology*, vol. 3, no.7, pp.14375-14387.
- 3. N. Hussain, S. Khaleghizadeh, P. Salimi, and A.A.N. Abdou (2014). "A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces," *Abstract and Applied Analysis*, vol. 2014, Article ID 690139, 16 pages.
- N. T. Hieu, N. T. Thanh Ly, and N. V. Dung (2015). "A generalization of ciric quasicontraction for maps on S-metric spaces," *Thai* journal of Mathematics, vol. 13, no. 2, pp. 369-380.
- 5. S. Sedghi, N. Shobe, and A. Aliouche (2012). "A generalization of fixed point theorems in Smetric spaces," *Matematicki Veshik*, vol. 64, no.3, pp. 258-266.
- 6. S. Sedghi and N. V. Dung (2014) "Fixed point theorems on S-metric spaces," *Matematicki Vesnik*, vol. 66, no. 1, pp. 113-124.
- 7. W. Sintunavarat & P. Kumam (2012). "Common fixed points for R-weakly commuting in fuzzy metric spaces," *Ann. University Ferrara*, vol. 58, pp. 389-406.

Corresponding Author

Rajvir Kaur*

Department of Mathematics, Desh Bhagat University, Mandi, Gobindgarh