Journal of Advances and Scholarly Researches in Allied Education

Vol. X1V, Issue No. 2, January-2018, ISSN 2230-7540

Generating Relations Involving Hypergeometric

Function by Means of Integral Operators

Rakesh Ranjan*

Research Scholar, Department of Mathematics, V.K.S. University, Ara 802301, Bihar, India

Abstract — The nucleus of excavation is based on the results which involve exponential function. The
results of Exton and Pathan & Yasmeen are used with a view to obtain multivariable generating
functions which are partly bilateral and partly unilateral.

Keywords: Integral representation,
Functions, Variables, Function.

1. INTRODUCTION

It should be noticed that the exponential function,
which is a special case of the generalized
hypergeometric function pFgand p=q=0, appears
in many different situations; for instance, in
conformal mapping theory [151], in automorphic
function theory [151], in the theory of representation of
Lie algebras, in Physics and in the theory of differential
equations [87]. The leading example of partly bilateral
and partly unilateral generating function in terms of
exponential function is doubtless the result of Exton
(138]; p. 147(3)]
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and 'N'* are the classical Laguerre polynomials

([121; p. 200(1)).

Pathan and Yasmeen [109] modified Exton's result
(1.1) by defining M™ = max(0.=M) 54
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So that all factorials of negative integers occurring
in this definition have meaning. Thus we may
rewrite equation (1.1) in the form
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This result has attracted a great deal of interest by
several researchers including (for example) Pathan
and Yasmeen ([107], [108] and [109]). Goyal and
Gupta [52], Srivastava et al. ([142] and [143]).
Gupta et al [60], Kamarujjama et al. [79], and
Pathan and Subuhi [116]. Works on Exton’s result
inspired us to use integral operators to obtain more
generating functions, which are partly bilateral and
partly unilateral.

On account of many properties of generating
functions which are partly bilateral and partly
unilateral, an increasing, number of such problems
and properties are now capable of being elegantly
represented by their use. A number of such,
generating functions are obtained in this paper.

In section 1.2, an operator O is explored and some
generating functions are obtained by making use of
results of Exton [38] and Pathan and Yasmeen
[109]. Further, a number of multiple serids of
hypergeometric functions are obtained in Section
1.3.

2. INTEGRAL OPERATOR Q AND
GENERATING FUNCTIONS:

If we define the integral operator Q by
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Then rewriting the results ([130] p. 36(6)), ([45];
p.192(50), with y = 1), ([45]; p.193 (51), with y = 1) in
terms of this operator, we have the results
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Starting from the result (2.1) with z replaced | s, we
have
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Now using the results (1.3), (2.1) and (2.2), we can
establish the following result
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Now using the above result, together with the results
(2.3) and (1.3), we are led to
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Which for O = p , yields
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3. GENERATING FUNCTIONS OF

SEVERAL VARIABLES

The method of derivation of the generating functions
involves the following results.

A result of Pathan ([106]; p. 52(5))
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Where M2 and by analytic
continuation, none of the quantities c, eq, e, ... , €,
are zero or a negative integer.
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The result of Pathan and Yasmeen ([108]; p.5(3.1))
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Expressing Laguerre polynomial ™ in terms of

confluent hypergeometric function 1 using (1.2)

and further using the relation between and the
Whittaker’s function of the first kind

M, ([130];p.39(23))
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We see that the Laguerre ponnomiaI is related
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Now, replacing X;, X, ad X3 by X;u, Xu and Xsu,
respectively in (3.3) and multiplying both the sides by
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Further using (3.4) to replace each of the Laguerre
polynomials, and finally integrating with respect to u
from zero to infinity, we arrive at
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Now using result (3.1), we get, after some
simplifications
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To make the above result more proper, we replace
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Special Cases:

1. Taking a = b and z O 0 in equation (3.7)
and redplacing 3-a by a,

We get
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Where 4 is Lauricella function [95] of n variables,
defined as follows
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Further for n = 3, equation (3.8) reduces to
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2. For n = 3 equivalently for x4, = x5 = ... =x, =0,
equation (3.7) gives us
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Where P is hyper geometric function of four
variables considered by Pathan [8] and is defined as
follows
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