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Abstract – In this paper we obtain some subsets of the set IR of real numbers on which fractional part 
function is continuous as a real-valued function of a real variable. Every real number can be written as 
the sum of its integral part and fractional part. This gives rise to fractional part function as a real-valued 
function of a real variable. This function is helpful in the study of dynamics on circle. Some properties 
of such subsets of IR are obtained. 
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1. INTRODUCTION 

Dynamics is the study of the motion of a body, or more 
generally evolution of a system with time (see e.g. [2], 
[3]). In dynamics on circle, motion takes place through 
the points of a circle. This movement of points is tried 
to be represented by a function defined on the circle. 
Such functions are called circle maps. The study of 
dynamics on circle also includes knowing about the 
continuity of the concerned functions. A circle in the 
plane IRxIR is the boundary of a disc with centre at a 
point of the plane and some radius. Corresponding to 
discs in IRxIR, there are spheres in IRxIRxIR, in fact, 
for every natural number n, there are spheres in IR

n+1
 

(=IRxIRx…….IR(n+1) times). Thus the boundary of a 
sphere with centre at a point of IR

n+1
 and some radius 

can be considered as a ‗circle‘ in IR
n+1

.  Since any two 
circles in IRxIR are homeomorphic, circle in the plane 
means the circle at the origin of the plane with unit 
radius for the study involving dynamics on circle. Such 
a circle is denoted by S

1
. The corresponding circle in 

IR
n+1

 is denoted by S
n
. But here we shall consider only 

S
1
. A circle map is a function whose domain and 

codomain both are S
1
. The continuity of a function at a 

point assures that the points which are close to the 
point of continuity (i.e. the points which are in a certain 
neighborhood of the points of continuity) are mapped, 
by the function, as close to each other as we want. 
Dynamics on the circle and dynamics of circle maps 
have been studied by many see e.g. [3], [4] and [5]. 

Every real number can be written as the sum of its 

integral part and fractional part. Let x  IR. Using 
Archimedean property of real numbers (It states that 
given a real number x there exists an integer n, n ≥ x) 
and well-ordering property of natural numbers (It 
states that every non-empty subset of natural numbers 
has the least element), there exists smallest integer nx 
such that x ≤ nx. This integer nx is called the integral 

value of x and is denoted by [x]. Since [x] ≤ x < [x] + 
1, 0 ≤ x – [x] < 1. x – [x] is called the fractional part 
of x, and is denoted by rx. By definition S

1 
= {(cosx, 

sinx) : x  [0, 2)}. It can be seen that S
1
 = 

{(cos2y, sin2y) : y  [0, 1)}. Let x  IR. Then x = 

[x] + rx where rx  [0, 1). Therefore S
1
 = {(cos2x, 

sin2x) : x  IR}.  For x  IR, e
ix
 = cosx + isinx is a 

periodic function with periodicity 2.  There is (the 

covering map)  : IR  C = the set of complex 

numbers, defined as (x) = e
2ix

 = cos2x + isin2x. 

As a point of IRxIR, (x) = (cos2x, sin2x). Thus  
is also a function from IR to IRxIR. It can be seen 

(e.g. see [1]) that (x+n) = (x) for every integer n. 

Thus  is a periodic function with periodicity 1. 

Since S
1
 = {(cos2x, sin2x) : x  IR}, the function 

,  maps IR onto the circle S
1
  IRxIR, or C. For 

every integer n,  : [n, n+1)  S
1
  is one-one and 

onto. In particular,  : [0, 1)  S
1
  is one-one and 

onto. If we identify 0 and 1 of [0, 1], then S
1
 can be 

identified with [0, 1]. A circle map is a continuous 

function f : S
1 
 S

1
. For example, for a fixed , 0 < 

 < 2, if we define f : S
1
  S

1
 as f(cosx, sinx) = 

(cos(x+), sin(x+)), f is a circle map. Also, for a 

fixed , 0 <  < 2, if we define f
*
 : S

1
  S

1
 as 

f
*
(cosx, sinx) = (cos(x+2π), sin(x+2π)), f

*
 is a 

circle map. If we define, for x  IR, F : IR  IR,  

F(x) = x + /2, then we note that that  o F = f o 

. Let x  IR. (F(x)) = π(x + /2) = (cos2π(x + 

/2), sin2π(x + /2)) = (cos(2πx+), sin(2πx+)). 

(x) = (cos2x, sin2x). f((x)) = f(cos2x, sin2x) 

= (cos(2πx+), sin(2πx+)). Such a function F is 

called a lift of the circle map. If we define F
*
 : IR  

IR,  F*(x) = x + , for x  IR, then it can be seen 

that  o F* =  f
*
 o . As F*(x) = x + , π(F*(x)) = 

π(x+) = (cos2π(x+), sin2π(x+)). (x) = (cos2x, 

sin2x). f*((x)) = (cos2π(x+), sin2π(x+)). Thus 

F* is called a lift of the circle map f
*
. Thus the 
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function  plays a significant role in the study of 
dynamics on circle maps. In the definition of lift of a 

circle map the function F : IR  IR is assumed to be 
continuous. Some results about the function F are 
obtained in [1] without assuming the continuity. 

For each x  IR, x = [x] + rx with 0 ≤  rx < 1. This gives 

a function r : IR  [0, 1)  taking x to rx. The function r is 
called the fractional part function. The fractional part 
function apart from being used in proving some 
properties of subsets of IR (as seen below) is helpful in 
some part of the study of dynamics of circle maps, in 
particular, and functions in dynamical systems in 
general. 

In this article we shall study some subsets of IR where 
the fractional part function is continuous. 

The continuity of a real-valued function of a real 

variable is defined using –. Suppose the domain Y of 
a real-valued function of a real variable is a proper 

subset of IR. If Y is an interval, the same – definition 
of continuity works except at the end point(s), where 
we talk of left-hand/right-hand continuity depending 
upon the end point. When the domain Y is not 
necessarily an interval, we need an exact definition of 
continuity, to be precise in our considerations. An easy 
way for that is to consider subspace topology. But that 
definition is theoretical and not easy to apply. We have 
an equivalent definition of continuity of a real-valued 

function of a real variable defined on Y, in terms of –, 
which is easy to use. 

2. DEFINITIONS AND NOTATION 

IR is used to denote the real numbers. IN is the set of 
natural numbers. Z is the set of integers. A circle in 
the plane IRxIR is the boundary of the disc with centre 
at the origin of the plane and unit radius, it is denoted 

by S
1
. S

1 
= {(cosx, sinx) : x  [0, 2)} = {(cos2y, 

sin2y) : y  [0, 1)} = {(cos2x, sin2x) : x  IR}. A 

circle map is a continuous function f : S
1 
 S

1
. Lift of 

a circle map f : S
1 
 S

1
 is a continuous function F : IR 

 IR such that (i)  o F = f o  (ii) there exists some k 

 Z such that F(x + 1) F(x) + k for every x  IR. 

Archimedean property of real numbers : Given a 
real number x there exists an integer n, n ≥ x. Well-
ordering property of natural numbers : Every non-
empty subset of natural numbers has the least 

element. Let x  IR. Using Archimedean property of 
real numbers and well-ordering property of natural 
numbers, there exists smallest integer nx such that x 
≤ nx. This integer nx is called the integral value of x. 
[x] is used to denote nx. Since [x] ≤ x < [x] + 1, 0 ≤ x – 
[x] < 1. x – [x] is called the fractional part of x, and is 

denoted by rx. For each x  IR, x = [x] + rx with 0 ≤ rx < 

1. This gives a function r : IR  [0, 1)  taking x to rx. 
The function r is called the fractional part function. 

Let Y  IR. cl(Y) denotes the closure of Y. A collection 

{Yj : j  J} of subsets of IR is called separated or pair 

wise separated if, for every j, k  J, j ≠  k, cl(Yj)Yk = 

. Let 0 < s < 1. Let As = {[n, n + s] : n  Z}. Let As
o
 = 

{(n, n + s) : n  Z}. Let Cs = {(n + s, n + 1) : n  Z}. 

Let Cs* = CsZ = {[n + s, n + 1) : n   Z}.  Let Bs = {x 

 IR : r(x) ≤ s}. Let Bs* = {x  IR : r(x) ≥ s}. Let Es = {x 

 IR : r(x) = s} = BsBs
*
. For n  Z and 0 < s < 1, let 

As
n
 = [n, n + s] and Vs

n
 = [n, n + s). We can define As 

and As
n
, also for s = 0; A0 turns out to be Z and A0

n
 = 

{n}. Let Y  IR. Let g : Y  IR. Let x  Y, g : Y  IR is 

continuous at x if g : (Y, *)  IR is continuous at x, 

where * is the induced topology of the usual topology 

of IR. g : Y  IR is continuous if g : Y  IR is 

continuous at every x  Y. 

3. PRELIMINARIES 

As seen in the introduction, for a fixed  with 0 <  < 

2, we have two circle maps f  and f
*
, defined as 

f(cosx, sinx) = (cos(x+), sin(x+)) and f
*
(cosx, sinx) 

= (cos(x+2π), sin(x+2π)). F : IR  IR,  F(x) = x + 

/2, and F
*
 : IR  IR,  F*(x) = x +  are lifts of f 

and f
*
 respectively. 

For  = /4, /2 and 3/4, we have the following 

graphs of f. Since  is taking a particular value, we 

can write f in place of f. 

 = /4 

x=0:0.01: pi; 

x1=cos(x); 

y1=cos(x+pi/4); 

x2=sin(x); 

y2=sin(x+pi/4); 

plot(x1,y1) 

grid on 

 = /4 
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 = /2 

x=0:0.01: pi; 

x1=cos(x); 

y1=cos(x+pi/2); 

x2=sin(x); 

y2=sin(x+pi/2); 

plot(x1,y1) 

grid on 

 = /2 
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 = 3/4 

x=0:0.01: pi; 

x1=cos(x); 

y1=cos(x+3*pi/4); 

x2=sin(x); 

y2=sin(x+3*pi/4); 

plot(x1,y1) 

grid on 

 = 3/4 

 

Remark.3.1.  IR = {V1
n
 : n  Z} = {[n, n + 1) : n  

Z}. 

Proof.  Let x  IR. x = [x] + r(x) with 0 ≤ r(x) < 1. 

Therefore x  [m, m + 1), where m = [x]. Thus IR =  

{[n, n + 1) : n  Z}. 

Remark.3.2. (i) For every s, 0 ≤ s < 1, As = {As
n
 : n 

 Z}. (ii) IR = {[n, n + s) : n  Z, 0 < s < 1}. (iii)  IR 

= {As
n
 : n  Z, 0 < s < 1}. 

Proof.  (i) It follows by definitions of As and As
n
.
 
 (ii) 

Let x  IR. x = [x] + r(x) with 0 ≤ r(x) < 1. Let t be 

such that 0 ≤ r(x) < t < 1. Therefore x  [m, m + t), 

where m = [x]. Thus IR = {[n, n + s) : n  Z, 0 < s 

< 1}. (iii) By (ii), IR = {[n, n + s) : n  Z, 0 < s < 1} 

 {As
n
 : n  Z, 0 < s < 1}. So (iii) follows. 

Lemma.3.3. For every s, 0 < s < 1, As = Bs. 

Proof.  Let x  As. Then x  [n, n + s] for some n  
Z. Since n ≤ x ≤ n + s < n + 1, n = [x]. Since x = [x] +  

r(x) and n + r(x) ≤  n + s, therefore r(x) ≤ s. So x  

Bs. Conversely, let x  Bs. [x] ≤ x = [x] + r(x) ≤ [x] + s 

as r(x) ≤ s. Therefore x  [[x], [x] + s]. So x  As. 

Remark.3.4. For every s, 0 < s < 1, Es = {n + s : n  
Z}. 

Proof.  Let x  Es. Since r(x) = s, x = [x] + s. 

Therefore x  {n + s : n  Z}. Conversely, let x  {n 

+ s : n  Z}. Then x = m + s for some m  Z. So x – 
m = s. Since [x – m] = – m + [x] and 0 < s < 1, 
therefore m = [x]. This implies that r(x) = s. 

Therefore x  Es. 

Lemma.3.5. Let H  IR. Let h : H  IR. Let x  H. 

If there exists a * > 0 such that for y  (x  *, x + 
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*), (i) x – y = h(x) – h(y), or (ii) h(x) – h(y) ≤ x – y 

for some fixed  > 0, then h is continuous at x. 

Proof. (i) Let  > 0. Let  = min{, *}. Let y – x < . 

Then y  (x  *, x + *) as  ≤ *. Therefore by the 

given condition (i), h(x) – h(y) = x – y <  ≤ . (ii) Let  

> 0. Let  = min{/, *}. Let y – x < . Then y  (x  

*, x + *) as  ≤ *. Therefore by the given condition 

(ii), h(x) – h(y) ≤ x – y <  ≤ . 

4. RESULTS 

Lemma.4.1.  Let {Yj : j  J} be a collection of subsets 

of IR such that {Yj : j  J} is closed.  Then {Yj : j  J} 

are pair wise separated  iff {Yj : j  J} are pair wise 
disjoint and each Yj is closed. 

Proof. If {Yj : j  J} are pair wise disjoint and each Yj is 

closed then clearly {Yj : j  J} are pair wise separated. 

Now suppose that {Yj : j  J} are pair wise separated. 

Let k  J. Let x  cl(Yk). Suppose x  Yk. For j  J, j ≠ 

k, since cl(Yk)Yj = , x  Yj. Thus x  {Yj : j  J}. 

Therefore x  B = IR – {Yj : j  J}. Since B is open 

and x  cl(Yk), BYk ≠ . But BYk =  as B  IR – Yk. 

Corollary.4.2.  Let {Bj : j  J} and {Yj : j  J} be such 

that IR – {Yj : j  J} = {Bj : j  J}. If {Bj : j  J} is 

open  then {Yj : j  J} are pair wise disjoint and each Yj 

is closed iff {Yj : j  J} are pair wise separated. 

Proof. By the given condition {Yj : j  J} is closed. 
Therefore the result follows by Lemma.4.1. 

Lemma.4.3. Let IR = {Yj : j  J} be such that YjYk = 

 for every j, k  J, j ≠ k. If for each j  J, Yj = HjKj 

with HjKj = , then IR – {Hj : j  J} = {Kj : j  J}. 

Proof. Let j, k  J, k ≠ j. Since YjYk = , YjHk = . 

Thus Yj   IR – Hk. So Yj  – Hk = Yj(IR – Hk) = Yj. This 

implies that {Yj – Hk : k  J, k ≠ j} = Yj. Therefore, 

{Yj – Hk : k  J} = Yj – Hj. Now  IR – {Hj : j  J} = 

({Yj : j  J}) – ({Hk : k  J}) = {(Yj – ({Hk : k  J}) 

: j  J} = {(Yj – Hk : k  J) : j  J} = {Yj – Hj : j  J} 

= {Kj : j  J}, as Yj – Hj = Kj. 

Lemma.4.4. For every s, 0 < s < 1, IR – As = Cs = {(n 

+ s, n + 1) ; n   Z}. 

Proof. By Remark.3.1, IR = {[n, n + 1) : n  Z}. Let J 

= Z. Let, for n  Z, Yn = [n, n + 1). Then YnYk =  for 

every n, k  Z, n ≠ k. Let Hn = [n, n + s] and Kn = (n + 

s, n + 1). Then Yn = HnKn and HnKn = . Therefore 

by Lemma.4.3, IR – As = Cs =  {(n + s, n + 1) : n   
Z}. 

Remark.4.5. For every s, 0 < s < 1, Bs* = {[n + s, n + 

1) : n   Z}. 

Proof.  Bs* = {x : r(x) > s}{x : r(x) = s}. Therefore, by 

definition of Bs, Bs* = (IR  Bs)Es = (IR – As)Es as Bs 
= As by Lemma.3.3. Since, by Lemma.4.4, IR – As = Cs 

= {(n + s, n + 1) ; n   Z} and Es = {n + s : n  Z}, Bs* 

=  {[n + s, n + 1) ; n   Z}. 

Remark.4.6. Let 0 < s < 1. For every n  Z, n is a limit 
point of Bs*, so Bs* is not closed. 

Proof. By Remark.4.5, Bs* =  {[n + s, n + 1) : n   Z}. 

Since n  Z iff n – 1  Z, Bs* = {[n –1 + s, n) : n   Z}. 

For n  Z, n is a limit point of Bs*, so Bs* is not closed. 

Remark.4.7.  IR – As
o
 = Cs* = {[n + s, n + 1) ; n   Z}, 

where As
o
 = {(n, n + s) : n  Z}. 

Proof. IR = {[n, n + 1) : n  Z}. Let J = Z. Let for n  

Z, Yn = [n, n + 1). Then YnYk =  for every n, k  Z, n 
≠ k. Let Hn = (n, n + s) and Kn = [n + s, n + 1). Then Yn 

= HnKn and HnKn = . Therefore by Lemma.4.3, IR 

– As
o
 = Cs*= {[n + s, n + 1) ; n   Z}. 

Remark.4.8. The Lemma.4.4 can also be proved using 
the function r i.e using Lemma.3.3. We give the proof 
below. 

Lemma.4.9.  (i) IR – As = Cs = {(n + s, n + 1) ; n   
Z}. (ii) As is closed. 

Proof.  (i) Since by Lemma.3.3, As = Bs, we prove 

that IR – Bs = {(n + s, n + 1) : n   Z}. IR – Bs = {x  

IR ; r(x) > s}. Let x  IR – B. So r(x) > s.  x = [x] + 

r(x). We claim x  ([x] + s, [x] +1). Since r(x) > s, [x] 
+ r(x) > [x] + s. Since r(x) < 1, [x] + r(x) < [x] + 1. 

Therefore [x] + s < x < [x] + 1. Hence x  ([x] + s, [x] 

+ 1). For the converse, suppose that x  (n + s, n + 

1) for some n  Z. Since n + s < x < n + 1, n = [x]. So 

r(x) = x – [x] > s. Therefore, x  IR – Bs. (ii) Since 

{(n + s, n + 1) ; n   Z} is open, by (i), IR – As is 
open. Therefore, As is closed. 

The following is the direct proof that As is closed. We 
need the following Remark for that. 

Remark.4.10. Let a, x, b  IR such that a < x < b. 

Let  = min{x – a, b – x} then a ≤ x –  and x +  ≤ b. 

So (x  , x + )  (a, b). 

Proof.  Since  = min{x – a, b – x},  ≤ x – a and  ≤ b 

– x. Therefore a ≤ x –  and x +  ≤ b. Therefore (x  

, x + )  (a, b). 

Proof of As is closed: Suppose x  As. So x  [[x], 
[x] + s]. Therefore r(x) > s  as x = [x] + r(x). Thus [x] + 

s < x < [x] + 1. Let  = min{r(x)  s, 1   r(x)}. Since x 

– ([x] + s) = r(x)  s, and [x] + 1 – x = 1 – r(x), by 

Remark.4.10, (x  , x + )  ([x] + s, [x] + 1). 

Therefore (x  , x + )  [[x], [x] + s] = .  Let n  Z, 
n ≠ [x]. Either n < [x] or [x] + 1 ≤ n. Let n <  [x]. By  

Remark.4.10, s ≤ r(x)  . Therefore, n + s < x  . 

Suppose  [x] + 1 ≤ n. Using Remark.4.10, x +  ≤ [x] 

+1 ≤ n. Thus (x  , x + )  [n, n + s] =  for every n 
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 Z. Therefore (x  , x + )  As = . So x is not a limit 
point of As. Hence As is closed. 

As mentioned in the introduction, we need to have a 
working definition of the continuity of a real-valued 

function of a real variable is defined using , when 
the domain Y of the function is a proper subset of IR. If 

Y is an interval, the same  definition of continuity 
works except at the end point(s). When the domain Y 
is not necessarily an interval, we have the following 
definition which works even when Y is an interval. But 
first we have the theoretical definition. Then we have 
an equivalent definition of continuity of a real-valued 

function of a real variable in terms of , which we 
use later. 

Remark.4.11. Let Y  IR. g : Y  IR. Let x  Y. (i) g is 

continuous at x iff, for given  > 0, there exists  > 0 

such that for y  (x  , x + )Y, g(x) – g(y) < . (ii) If 

there exists  > 0 such that for y  (x  , x + )Y, 

g(x) – g(y) ≤ x – y, then g is continuous at x. 

Proof. (i) It follows as (x  , x + )Y is open in the 

induced topology on Y. (ii) For given  > 0, if we take 

* = min{, }, then g is continuous at x. 

Remark.4.12. Let H  Y  IR. Let g : Y  IR. Let x  

H. (i) If  g : H  IR is not continuous at x, then g : Y  
IR is not continuous at x. (ii) The converse of (i) is not 

true. That is, if g : Y  IR is not continuous  at x, then 

g : H  IR may be continuous at x. 

Proof. (i) g : H  IR is not continuous at x, so by 

Remark.4.11, there exists some  > 0 such that 

whatever  > 0 we take there exists y  (x  , x + 

)H such that g(x) – g(y) ≥ . Since H  Y, y  (x  

, x + )Y. Therefore, in view of Remark.4.11, g : Y 

 IR is not at x.  (ii) Take H = Z and Y = IR. Every g : 

Z  IR is continuous. But every g : IR  IR is not 
continuous. 

Remark.4.13. Let x, y  IR. If [x] = [y], then x – y = r(x) 
– r(y). r(x) < r(y) iff x < y. 

Proof.  x = [x] + r(x) and y = [y] + r(y). Therefore x – y = 
r(x) – r(y) as [x] = [y]. Now it follows that r(x) < r(y) iff x 
< y. 

Proposition.4.14. Let As = {[n, n + s] ; n  Z}. r : As 

 IR is continuous. 

Proof.  Let x  As. First we find  > 0 such that for y  

(x  , x + )As, [y] = [x]. x  [m, m + s] for some m  

Z. Case(i) x  (m, m + s). Let  = min{x – m, m + s – 

x}. By Remark.4.10, (x  , x + )  (m, m + s). Let y  

(x  , x + )As. Then y  (m, m + s). Therefore [y] = 

[x] as s < 1.  Case(ii) x = m + s. Take  = ½(min{s, (1- 

s)}). By Remark.4.10, (x  , x + )  (m, m+1). Let y  

(x  , x + )As. Then y  (m, m+1). Therefore [y] = m 

= [x] as 0 < s < 1.  Case(iii) x = m. Take  = ½(min{s, 

(1  s)}).  Now by Remark.4.10,
 
(x  , x + )  (m  1, 

m + s). Let y  (x  , x + )As. Then y  [m, m + s) 

as (m  1, m + s)As  [m, m + s). Therefore [y] = [x]. 

Thus in every case, for y  (x  , x + )As, [y] = [x]. 
By Remark.4.13, x – y = r(x) – r(y). Now, by 
Remark.4.11 (ii), r is continuous at x. 

Remark.4.15. By Proposition.4.14, for every s with 0 < 

s < 1, r is continuous on As. The collection {As : s  IR, 
0 < s < 1} is a totally ordered subset of the p.o. set (IR, 

) because for s, t  IR, 0 < s, t < 1, As  At, or At  As 

depending upon s ≤ t, or t ≤ s. Let x  IR. x = [x] + r(x). 

Since 0 ≤  r(x) < 1, x  At for every t such that r(x) < 

t. Therefore {As : s  IR, 0 < s < 1} = IR. By 

definition As
o
 = {(n, n + s) : n  Z}. It can be seen 

that {As
o
 : s  IR, 0 < s < 1} = IR – Z. 

Remark.4.16. We have seen above that, for s = 0, 
As = Z, i.e. A0 = Z. It can be seen (below) that r is 
continuous also on A0. 

Remark.4.17. (i) r is continuous on IR – Z. (ii) r is 

continuous on Z. (iii) r is continuous on H, if H  IR 
– Z or Z. 

Proof. (i) Let x  IR – Z. Since [x] < x < [x] +1, by 

Remark.4.10 there exists a  > 0 such that (x  , x 

+ )  ([x], [x] + 1). Therefore, for y  (x  , x + ), 
[y] = [x]. By Remark.4.13, x – y = r(x) – r(y). 
Therefore r is continuous at x. Therefore r is 

continuous on IR – Z. (ii) Let m  Z. Let  > 0. For  

< 1,  (m  , m + )Z = {m}, therefore r(y) – r(m) = 

0 for every y  (m  , m + )Z. (iii) Restriction of 
a continuous function is continuous. 

5. CONCLUSION 

In the above considerations there are many subsets 
of IR on which the fractional part function r is 
continuous. There may be other subsets of IR on 
which r is continuous. But we do not have any more 
information about such subsets of IR. It is worth 
investigating to know other subsets of IR on which r 
is continuous, or to have some information about 
such subsets. 
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