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Abstract – A graphical label is a transfer of integrals to the vertices or edges or both, subject to 

certain practical conditions, labeled graphs provide useful mathematical models for a broad 

range of applications like: theoretical coding, including the design of the best types of codes, 

synch set codes, missile guidance codes, convolutionary codes with an optimal auto-

connection system. Graph theory applies in many fields of computer science, social science 

and natural science. The theory is also closely linked to numerous mathematical branches, 

including matrix theory, numerical analysis, probability, topology and combination. In fact, 

the graph theory is a mathematical component of any binary system. During the last 50 years, 

the theory of graphics has become an important mathematical tool for solving numerous 

problems. In appointing the distinct qualities of an entire number to each vertex, and then 

connecting the supreme distinction of these qualities to its extreme vertices, the differences in 

labelling in graph are recognized. Exploring the labelings for cycles, the results of two 

Cartesian graphs, rectangular and n-solid matrices which deteriorate the graphs into 

indicated pieces, are currently under consideration. The comparative issue for additional 

substance labels is also examined. 
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INTRODUCTION 

A graph with a distinction labeling characterized on it is known as a labeled graph. A 

decomposition of a labeled graph into parts, each part containing the edges having a typical 

weight is called basic weight decomposition. A typical weight decomposition of G in which each 

part contains rn edges is called rn-fair. 

A timberland wherein every segment is a way is known as direct woods. Blossom and Ruiz [13] 

share demonstrated that each part for all intents and purpose weight decomposition is a direct 

timberland and the vertices of least and most extreme mark are not interior vertices in any way of 

a section containing it. Right now consider the accompanying issue given in [13]. 

Let C = (V E) be a graph. A distinction labeling of C is an infusion f from V to the set of non-

negative numbers together with the weight function f on E given by f*(uv) = f(u) - f(v)I for each 

edge uv E. 

A graph G = (V,E) comprises of two finite sets: V(G), the vertex set of the graph, regularly 

indicated by just V, which is a nonempty set of elements called vertices, and E(G), the edge set 

of the graph, frequently signified by just E, which is a set (potentially empty) of elements called 

edges. A graph, at that point, can be thought of as a drawing or diagram comprising of an 

assortment of vertices (spots or points) together with edges (lines) joining certain pairs of these 
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vertices. Figure 1 gives a graph G = (V, E) with V (G) = { v1, v2, v3, v4, v5 } and E(G) = { e1, e2, 

e3, e4, e5, e6, e7 }. 

 

Figure 1: A graph G with five vertices and seven edges 

Sometimes we speak to an edge by the two vertices that it interfaces. In Figure 1 we have e1 = 

(v1, v2), e2 = (v1 ,v4). An edge e of graph G is said to be episode with the vertex v if v is an end 

vertex of e. For example in Figure 1 an edge e1 is episode with two vertices v1 and v2. An edge e 

having indistinguishable end vertices called a loop. At the end of the day, in a loop a vertex v is 

joined to itself by an edge e. The level of a vertex v, composed d(v), is the number of edges 

occurrence with v. In Figure 1 we have d(v1) = 3, d(v2) = 2, d(v3) = 3, d(v4) = 4 and d(v5) = 2. On 

the off chance that for some positive whole number k, d(v) = k for each vertex v of graph G, at 

that point G is called k-customary. 

The graph in Figure 1 is an associated and undirected graph. In contrast to most different 

territories in Mathematics, the theory of graphs has a definite beginning stage, when the Swiss 

mathematician Leonard Euler (1707-1783) considered the problems of the seven Konigsberg 

spans. In the mid eighteenth century the city of Konigsberg (in Prussia) was isolated into four 

areas by the Pregel waterway. Seven scaffolds associated these districts as appeared in Figure 2 

(a). 

A graph G is called associated if there is a way between each pair of vertices. When there is no 

worry about the bearing of an edge the graph is called undirected. Areas are appeared by A, B, C, 

D individually. It is said that the townsfolk of Konigsberg delighted themselves by attempting to 

discover a course that crossed each extension just once (It was OK to go to a similar island any 

number of times). 

 

Figure 2: (a) A map of Konigsberg (b) A graph representing the bridges of Konigsberg 

One of the themes in a mathematical area depicted as Discrete Mathematics is graphic theory. 

The difficulties and solutions in discrete mathematics contrast very fundamentally with those in 

constant mathematics. We check the number of articles in discrete mathematics and measure 

their sizes in continuous mathematics. Although discrete mathematics began just as soon as man 



Journal of Advances and Scholarly Researches in Allied Education 

Vol. XIV, Issue No. 3, (Special Issue) February-2018, ISSN 2230-7540 

469 

could find out how to check it, mathematics has been the historical background of mathematics 

for quite a long time. In the twentieth century this image began to change. The major 

improvement was the change in the development of mathematics. His main problem was 

transformed from the idea of a few to the idea of a set that was gradually reasonable in terms of 

discrete mathematics rather than consistent mathematics. Secondly, the expanding use of PCs in 

the public eye was sensational. In software engineering, a large part of the theory uses ideas of 

discrete math. 

In using the graph presented in Figure 2 Euler examined whether such a course could be 

expected. The main paper he distributed in 1736 in graphic theory shows the difficulty of such a 

course and provides the necessary conditions to make such a journey happen. The theory of the 

graph was meant to deal with such problems. 

Graph theory as an individual in the discrete family of mathematics has an incredible number of 

applications to software engineering and many sciences, design and trade (physical, organic and 

societal). Figure 3 contains a portion of major topics in the field of graph theory. 

 

Figure 3: Some Graph Theory 

The purpose of this study is to give a few outcomes in a class of problems arranged as Graph 

labeling. Leave G alone an undirected graph without loops or twofold associations between 

vertices. In labeling (valuation or numbering) of a graph G, we partner unmistakable nonnegative 

whole numbers to the vertices of G-as vertex labels (vertex esteems or vertex numbers) so that 

each edge gets a particular positive whole number as an edge name (edge worth or edge number) 

contingent upon the vertex labels of vertices which are occurrence with this edge. 

Enthusiasm for graph labeling started in mid-1960s with a guess by Kotzig-Ringel and a paper 

by Rosa. In 1967, Rosa distributed a spearheading paper on graph labeling problems. He called a 

function ƒ a β-labeling of a graph G with n edges (Golomb along these lines called such labeling 

graceful and this term is presently the well-known one) if ƒ is an infusion from the vertices of G 

to the set {0, 1, …, n} to such an extent that, when each edge is labeled with the supreme 

estimation of the contrast between the labels of the two end vertices, the subsequent edge labels 

are particular. This labeling gives a successive labeling of the edges from 1 to the number of 

edges. Any graph that can be gracefully labeled is a graceful graph. 

Examples of graceful graphs are shown in Figure 4. 
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Figure 4: Examples of graceful labeling of graphs 

Although numerous groups of graceful graphs are known, a general essential or adequate 

condition for gracefulness has not yet been found. Likewise It isn't known whether all tree 

graphs are graceful. A α-valuation of a graph G is a graceful valuation of G which likewise 

fulfills the accompanying condition: there exists a number γ (0 ≤ γ < E(G)) to such an extent that, 

for any edge e∈ E(G) with the end vertices u, v ∈ V(G), min { vertex name (v), vertex name (u) 

} ≤ γ < max { vertex mark (v), vertex name (u) } 

Obviously in the event that there exists a α-valuation of graph G, at that point G is a bipartite 

graph. The main graph in Figure 4 is a way with six edges and it has a α-labeling with γ =3. 

During the previous thirty years, more than 200 papers on this point have been showed up in 

diaries. Despite the fact that the guess that all trees are graceful has been the focal point of a 

large number of these papers, this guess is as yet unproved. Tragically there are hardly any broad 

outcomes in graph labeling. In reality in any event, for problems as barely engaged as the ones 

including the unique classes of graphs, the labelings have been hard-won and include a huge 

number of cases. 

Finding a graph that has a α-labeling is another regular methodology in numerous papers. The 

accompanying condition (because of Rosa) is known to be important and on account of cycles 

likewise adequate for a 2-ordinary graph G = (V,E) to have a α-labeling: ⏐E(G)⏐≡ 0 (mod 4). In 

1982, Kotzig guessed that this condition is likewise adequate for a 2-normal graph with parts. 

Labeled graphs fill in as valuable apparatuses for an expansive scope of applications. Sprout and 

Golomb in two brilliant reviews have introduced deliberately a use of graph labeling in many 

research fields, for example, coding theory problems, X-beam crystallographic investigation, 

correspondence network structure, ideal circuit design, basic voltage generator, and added 

substance number theory. Right now limit our conversation to applications of graceful labeling 

and its varieties in decomposition of graphs, ideal arrangement of distinction sets, and number 

groupings, for example, the Skolem succession: 

A graph G is a constrained nonempty set of things gathered vertices with a ton of unordered pairs 

of unmistakable vertices of G which is called edges showed by V (G) and E (G), independently. 

In case e = {u, v} is an edge, we form e = uv; we express that e joins the vertices u and v; u and v 

are neighboring vertices; u and v are event with e. In case two vertices are not joined, by then we 

express that they are non-connecting. If two unmistakable edges are scene with a normal vertex, 

by then they are said to be coterminous each other. 

GRAPH DECOMPOSITION 

Definition 1: A decomposition of a graph G is a family H = (H1, H2, … , Hn) of sub graphs of G 

such that each edge of G is contained in exactly one member of H. In fact G is the edge disjoint 

union of its sub graphs Hi 
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Figure 5: Decomposition of a graph 

For example the graph G shown in Figure 5 has a decomposition H = (H1, H2, H3) into three K3: 

E(H1) = {(u1, u2), (u2, u6), (u1, u6), E(H2) = {(u2, u3), (u3, u4), (u2, u4), E(H3) = {(u1, u4), (u1, u6)} 

and V(H1) = (u1, u2, u6 ), V(H2) = (u2, u3, u4 ), V(H3) = (u4, u5, u6 ). 

Definition 2: Let two graphs G and G′ be given. A G-decomposition of a graph G′ is a 

decomposition of G into sub graphs isomorphic to G. In other words, each member Hi in 

definition 2. must be isomorphic to G. We write ′ whenever a G-decomposition of G′ exists. 

The decomposition of graph G in Figure 5 is a K3-decomposition, i.e.,   

Definition 3: A decomposition H of a graph G into subgraphs H1,H2, … , Hn is said to be cyclic 

if there exists an isomorphism ƒ of G which induces a cyclic permutation fv of the set V(G) and 

satisfies the following implication: if Hi ∈ H then f (Hi) ∈ H for i = 1,2, … ,n. Here f (Hi) is the 

subgraph of G with vertex set {f (u); u ∈ V(Hi)} and edgeset { (f (u), f (v) ); e = ( u, v )∈ E(Hi) }. 

PERFECT SYSTEM OF DIFFERENCE SETS 

Definition 4: Let c, m, p1, p2, … , pm be positive integers, and Si ={ X0i < X1i < … < Xpi,i }; i = 

1,2, … ,m be a sequence of integers and Di = { Xji - Xki , 0 ≤ k < j ≤ pi }, i = 1,2, … ,m be their 

difference sets. Then we say that the system {D1, D2, … ,Dm } is a perfect system of difference 

sets (PSDS) starting with c if 

 

Each set Di is called a component of PSDS {D1, D2, … , Dm }. The size of Di is pi. A PSDS is 

called regular if all its components are of the same size i.e. p1 = p2 = … = pm = n-1. Traditionally 

a regular PSDS with m components of size n-1 starting at c is referred to as (m, n, c). 
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then the elements of Di can be represented in the form of a difference triangle: 

 

Biraud and Blum and Ribes [5] were most likely the initial ones to watch a connection between 

graceful labeling of graphs and PSDS. The ordinary PSDS (1,n,1) is a PSDS with one segment 

beginning with 1. There exists just two normal PSDS (1,n,1) [5]. They are 

 

The mirror images of the above PSDS are also PSDS. 

LABELING, COVERING AND DECOMPOSING OF GRAPHS 

Definition 5 A standards in a numerical framework (Σ; R) is said to be Smarandachely denied on 

the off chance that it carries on in at any rate two unique ways inside a similar set Σ, i.e., 

approved and invalided, or just invalided however in different unmistakable manners. A 

Smarandache framework (Σ; R) is a scientific framework which has at any rate one 

Smarandachely denied rule in R. 

Definition 6 For an integer m ≥ 2, let (Σ1; R1), (Σ2; R2), · · · , (Σm; Rm) be m mathematical 

systems different two by two. A Smarandache multi-space is a pair (Σ; e Re) with 

 

Definition 7 A maxims is said to be Smarandachely denied if the saying carries on in at any rate 

two unique ways inside a similar space, i.e., approved and invalided, or just invalided yet in 

numerous particular manners. 

Example 1 Let us consider an Euclidean plane R2 and three non-collinear points A, B and C. 

Characterize s-points as all standard Euclidean points on R2 and s-lines any Euclidean line that 

goes through one and only one of points A, B and C, for example, those appeared in Fig.6. 

(i) The adage (A5) that through a point outside to a given line there is just one equal going 

through it is presently supplanted by two articulations: one equal, and no equal. Leave L 

alone a s-line goes through C and is equal in the Euclidean sense to AB. Notice that 

through any s-point not lying on AB there is one s-line corresponding to L and through 

some other s-point lying on AB there is no s-lines corresponding to L, for example, those 

appeared in Fig.6(a). 
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(ii) The maxim that through any two particular points there exist one line going through them 

is presently supplanted by; one s-line, and no s-line. Notice that through any two 

unmistakable spoints D, E collinear with one of A, B and C, there is one s-line going 

through them and through any two particular s-points F, G lying on AB or non-collinear 

with one of A, B and C, there is no s-line going through them, for example, those 

appeared in Fig.6(b). 

 

Fig.6 

Definition 8 A combinatorial system CG is a union of mathematical systems (Σ1; R1),(Σ2; R2), · 

· · , (Σm; Rm) for an integer m, i.e., 

 

with an underlying connected graph structure G, where 

 

Vertex-Edge Labeled Graphs with Applications 

1. Application to Principal Fiber Bundles 

Definition 9 A labeling on a graph G = (V, E) is a mapping θL : V ∪ E → L for a name set L, 

meant by GL. 

In the event that θL: E → ∅ or θL: V → ∅, at that point GL is known as a vertex labeled graph or 

an edge labeled graph, meant by GV or GE, separately. Else, it is known as a vertex-edge labeled 

graph. 

Example: 
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Fig.7 

Specified Parts Decomposition Problem 

Given a graph C with edge set E(C) and an assortment of edge-disjoint straight woods F1, F2,..., 

Fk containing a sum of JEJ edges, does there exist a typical weight decomposition of C whose 

parts are individually isomorphic to F1 , F2,..., Fk? 

We get normal weight decompositions into determined parts for cycles, cartesian item G1 x C2 of 

two graphs C1 and C2 , rn-crystals Cm x P, rectangular matrices Pm X P and for n-shapes Q. We 

likewise talk about the comparing issue for added substance labelings. 

Theorem 1. A labeling exists for every cycle with ns edges  which decomposes it into n 

copies of sP2. 
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Case (ii) s is even. 

Define a labeling f as follows. 
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In both cases the labeling f defined above realizes a decomposition of  into n copies of  

A common-weight decomposition of an even cycle into two immaculate matching's. In the 

accompanying theorem we get a comparative outcome for odd cycles. 

CONCLUSION 

A vertex v of a graph G is known as a cut-vertex of G if the evacuation of v expands the quantity 

of parts. An edge e of a graph G is known as a cut edge or extension if the evacuation of e 

expands the quantity of parts. A lot of edges S is called an edge cut of G if the quantity of 

segments of G - S is more prominent than that of G. A square of a graph is a maximal associated, 

non-unimportant sub graph without cut-vertices. A graph is non-cyclic in the event that it has no 

cycles. A tree is an associated non-cyclic graph. A tree with precisely one vertex of degree > 3 is 

known as a creepy crawly tree and an established tree comprising of k - branches where ith 

branch is a path of length I, is called an olive tree. Let G be a graph with vertex set{ v, v2, ..., v}. 

At that point the graph obtained by presenting n new vertices u1 , u2 , ..., u and edges u1 vi is 

indicated by G. The separation between two vertices u and v in an associated graph G is the 

length of the most limited u - v path in G and is signified by d(u, v). The level of a vertex v in a 

graph G, indicated by d(v), is the quantity of edges episode with v. The base degree among the 

vertices of G is indicated by 6(G), while the greatest degree among the vertices of G is signified 

by A(G). In the event that 6(G) = A(G) = r, at that point all vertices have a similar degree and G 

is known as a customary graph of degree r. In the event that d(v) = 0, v is called a disconnected 

vertex. 
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