

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

206

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 1, April-2018, ISSN 2230-7540

A Study in Release Time Problems

Somkant Khare*

Research Scholar, Department of Mathematics, SVN University Sagar (MP)

- X -

1. INTRODUCTION

Very early in the development of computers, people
referred to the actual physical components – the tubes
and relays, the restores and wires, and chassis – as
computer hardware. The word software was then
coined to describe the non-hardware components of
the computer, in particular the programs that were
needed to make the computers perform their intended
tasks. The word caught on rapidly, and was in quite
general use by 1960.

One speaks of software shops (i.e organizations that
produce software), software maintenance, and more
recently, software engineering. Although the word
software can be used in connection with all kinds of
programs, it is usually used to denote programs whose
use in not limited to one particular job or application.
Thus, one speaks of system software, of software
systems, of mathematical software, of software for
business applications, etc.

Growth in software engineering technology has led to
production of software for highly complex situations
occurring in industry, scientific research, defense and
day to day life.

The computer revolution is fueled by an ever more
rapid technological advancement.

Thoday, computer hardware and software permeates
aur modern society. Computer are embedded in
wristwatches, telephone, home appliances, buildings,
automobiles, and aircraft. Science and technology
demand high-performance hardware and high-quality
software for making improvements and breakthroughs.
We can look at virtually any industry-automotive,
avionics, oil, telecommunications, banking, semi-
conductors, pharmacals – all these industries are
highly dependencies on computers increase, the
possibility of cries from computer failures also
increase. The impact of these failures ranges from
inconvenience (eg., malfuncation of and home
appliances) to economic damage (eg., interruption of
banking systems) to loss of life (eg., failure of flight
systems or medical software).

Needless tomsay, the reliability of computer systems
has a major concern for our society.

Though high reliability of hardware part of these
systems can be guaranteed, the same cannot be said
for software. Therefore a lot of importance is
attached to the testing phase of the software
development process, where around half the
development resources are used [Musa et al., 1988].

Essentially testing is a process of executing a
program with the explicit intention of finding faults
and it is this phase, which is amendable to
mathematical modeling.

It is always desirable to remove a substantial number
of faults from the software. In face the reliability of
the software is directly proportional to the number of
faults removed. Hence the problem of maximization
of software reliability is identical to that of
maximization of fault removal. At the same time
testing resource are not unlimited, and they need to
be judiciously used.

In focusing on error prevention for reliability, we need
to identify and measure the quality attributes
applicable at different life cycle phases. As
discussed previously, we need to specifically focus
on requirements, design, implementation, and
phases.

Testing phase in Software Development Life
Cycle.

Software development process is often called
Software Life Cycle, because it describes the life of a
software product from its conception to its
implementation. Every software development
process model includes system requirements as
input and a delivered product as output. Many life
cycle models have been proposed, based on the
tasks involved in developing and maintaining
software, but they all consist of the following stages
and faults can be introduced during any of these
stages.

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

207

 A Study in Release Time Problems

2. RELEASE POLICIES UNDER PERFECT
DEBUGGING

With the intrusion of computer in every walk of lives-
improper functioning \failure of software can cause
serious problems. As software systems have become
more and more complex, the important stage of
software development life cycle as it provides the
measure of software reliability and assists to judge the
performance, safety, fault –tolerance or security of the
software. A software development life cycle consists of
four phases:

Specifications, development, Testing and
Implementation.

Nearly half of the resources of SDLC are used up in
the testing phase. Before newly developed software is
released to the user, it extensively tested for errors
that may have been introduced during development.

During the testing phase one of the major concerns for
the management is to determine when to stop testing
and release the software to the user. Although deteted
errors are removed immediately, new errors may be
introduced during debugging. Software that contains
errors and is released to the market incurs high failure
costs. Debugging and

Release Policies Based On Different Criteria .

Notations

a : initial error content.

b : proportionality constant (failure rate per error).

m(t) : expected number of software failures by time t.

C1 : cost incurred on a perfect debugging effort
before release of the software system.

C2 :cost incurred on a perfect debugging effort after
release of the software system (C2 >C1).

C3 : testing cost per unit time.

x : mission time.

T‘ : optimal release time.

T1 : software life cycle length.

For an exponential SRGM in continuous time, the
mean value function M(t) ((number of failures/faults
removed) is defined as: Where a is the total expected
error content in the software and b is the error
detection rate per remaining error. The failure intensity
function is

Thus the total software development cost incurred by
the manufacturer during the software life cycle where
m(T) is the total number of faults detected upto time t
which are removed instantly is given by Where C1
and C2 are the cost of fixing a fault before (after)
releasing the software, C3 is the testing cost per unit
tine T1 is software lifecycle (>T). C2 is assumed to be
greater than C1

The expected software reliability R﴾x|T) is defined as
the probability that a software failure does not occur in
tha interval (T, T+x], given that last failure
occurrence time is T ≥ 0 (x ≥ 0) is defined as.

Release Policies under Cost Criteria [Okumoto et
al., 1980].

A major concern in software development is the cost.
It is well known that the development of a software
system is time –consuming and costly. Thus the
main aim of the management is always to minimize
the total software development cost keeping in maind
the desired reliability of the software which has to
achieved. Hence software cannot be tested for an
indefinite period of time as it increases tis testing
cost indefinitely or it cannot be released prematurely
as it increases the cost of fixing the faults in
operational phase. Thus the total software
development cost plays vital role in determining the
optimal release time of the software. Most commonly
cost models seen in literature for determaination of
release time for perfect debugging NHPP models
includes cost of testing, cost of removing faults
during testing phase and cost of failure and removal
of faults during operational phase.

3. RELEASE POLICIES UNDER
IMPERFECT DEBUGGING

In conventional software growth models, it is
assumed that an error or a fault is completely
removed after it is detected. Thais implies that no
new error or fault is introduction when an a fult is
removed. This assumption significantly contributes to
the simplicity of these models. In a practical project,
however, it is hard to assume that no errors are
introduced when an erroe is detected and removed.
Almost all professional programmers have
experienced cases in which they fixed one error to
create another.

Sometimes new reeors are introduced seve3ral
times in fixing a single error. For this reason,practical
prople donot believe the results of software reliability
growth analysis. They sometimes say that it is a
moving target.

In rela life situations, most of the debugging
processes or the fault removal efficiency is not

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

208

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 1, April-2018, ISSN 2230-7540

perfect. The fault removal team may not be able to
remove the fault perfectly on the detection of a failure
and the original fault may remain or replaced by
another by another fault. When a failure occurs, the
cause of the failure is identified and removed. To
ensure occurs again, the code is checked again. Two
possibilities occue.

The fault, which was thought to be perfectly fixed, has
been imperfectly repaired and caused same type of
failure again when checked on the fact that the faut
was perfectily removed but some other fault was
generated while removing the cause of the failure. This
called error generation, which can be be known only
during the removal phase. Imperfect fault debugging
causes more faqilures as compared to removals by
time infinity but the fault content temains the same.
However, when a fault is genered, the munber of
failures increases because the fault content has
increased. Some models have been developed in
literature to incorporate the. effect imperfect debugging
in modeling software reliability [Kapur et al.,1996;Ohbe
et al., 1989; pham etal.,1999; Zang et al.,2003].

This chapter is divided in six sections. In section-
3.1,we discuss two software reliability growth models
(SRGMs) under imperfect debugging based on non-
homogeous poisson process (NHPP) and combining
multiple failure types with impact debugging that can
be used to determing the optimal 3.3 presents a
software reliability growth models which incorporates
the possibility of introducing secondary faults,
generated through imperfect debugging of primary
failures. The mean total number of failures, comprising
the primary and secondary failures, is obtained. We
also discussed a cost model and consider some
optimal release policies based on random lift cycle as
well as a penalty cost (due to delay for a scheduled
delivery time).

Related optimal release policies that minimize the
expected software System costs (subject to various
constraints) are also discussed. Further, in section 3.5,
we investigate the effect of imperfect debugging on
software development cost, which, in turn, might affect
the optimal software release time or operational
budget. Finally, in section 3.6 we summarize the
conclusion.

Exponential and Modified Exponential Reliability
Growth Models [Kapur et al.,1990].

Here we discuss two software reliability growth models
(SRGMs) under imperfect debugging based on-non-
homogeneous poison (NHPP). Related optimal
release policies are also discussed. Total cost incurred
on the software until it is supported also include the
cost incurred on those failures which could not be
removed.

Release policies discussed have tended to minimize
such a wasteful expenditure.

4. RELEASE POLICIES BASED ON COST
AND RELIABILITY CRITERIA CONSIDERING
TESTING EFFORT AND EFFICIENCY

During the past 30 years, a number of Software
Reliability Growth Model (SRGMs) were proposed
[Xie, 1991; Lyu, 1996; RAC, 1997; Pham, 2000;
Grottke, 2001]. SRGMs are applicable to the late
stages of testing. They can provide very useful
information about how to improve reliability. Some
important metrics, such as the number of initial faults,
failure intensity, reliability within a specific time period,
number of remaining faults, mean time between
failures (MTBF), and mean time to failure (MTTD), can
be easily determined through SRGMs. Issues such
as imperfect debugging and the learning
phenomenon of developers have been considered in
these models.

Most SRGMs assume that faults detected during
tests will eventually be removed.

Consideration of fault removal efficiency in the
existing models is limited. Fault removal efficiency is
a useful metric in software development practice and
it helps developers to evaluate the debugging
effectiveness and estimate the additional workload.
In practice, fault removal efficiency is usually
imperfect. Although some software reliability studies
addressed the imperfect debugging phenomenon,
most of them only considered possibility of adding
new fault while removing the existing ones. However,
imperfect debugging also means that detected faults
are removed withimperfect removal efficiency other
than 100%.

It is not unusual for the software development team
to find that a software fault has been reported
multiple times befor it is finally removed. Some faults
can only be encountered in the customer field trails.
Therefore fault removal efficiency is an important
factor for software quality, reliability estimation and
software project management.

Some reliability models are very successful in
predicting the faults during phases of the
development. However, choosing a good model that
can be used to explain the current and past failure
behavior most adequately is very important. From
our studies, we find that many authors considered a
Non-homogeneous poisson process (NHPP) as a
stochastic process to describe the fault process.
Recently, [Huang et al., 1998, 1999a,b; kuo et
al.,2001; Huang and kuo, 2002; Huang et al., 2003
Huang, in press] proposed a SRGM that

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

209

 A Study in Release Time Problems

incorporates the concept of logistic testing-effort
function (TEF) into an NHPP model to get a better
description on the software fault phenomenon. The
logistic TEF has the advantage of relating the work
profile more directly to the natural structure of software
development. It can be used to pertinently describe the
resource consumption during the software
development process and get a conspicuous
improvement in modeling the distribution of testing –
effort ecpenditures.

The proposed model has a fairly accurate prediction
capability.

In addition to modeling the software fault detection
process, we also address the problem faced by most
software managers, namely, how to decide when to
stop testing and release software. This is a problem of
decision-making under uncertainly and involves a
tradeoff between realistic and cost. Here we propose a
new software cost model that can be used to formulate
realistic total software cost projects discuss the optimal
release policy based on cost and reliability considering
testing-effort and efficiency. The cost modal includes
the testing cost, the debugging cost during testing
phase, and the extra cost due to introduce new test
techniques, etc.

This chapter is organized as follows: In section 4.1, we
discuss a methodology to integrate fault removal
efficiency into SRGMs. Section 4.1.1 presents the
formulation of NHPP model addressing fault removal
efficiency and fault introduction rate. Moreover, the
exlicit solution of the mean value function (MVF) for
the proposed model is also discussed in this section.
In section 4.2, we frist review a SRGM with
generalized logistic testing-effort function (TEF) in
sevtion 4.2.1. In section 4.2.2, we introduce the
concept of testing efficiency improvement obtained by
new test techniques during testing. The optimal
software release time problem based on minimizing
cost subject to achieving a given level of reliability
considering the extra cost of introducing new
tehniquse during testing is discussed in section 4.2.3.
Section 4.3 concludes the chapter.

Bicriterion Release policy for Continuous Software
Reliability Growth Model under Imperfect
Debugging [Kapur et al.,1994].

Notation

a : initial error content.

b : proportionality constant (fault removal

rete per remaining fault).

m(t): mean value function in the NHPP model,m(0)=0.

C1(C2) : cost of fixing an error during testing
(operation) (C2 > C1)

C3 : testing cost per allocated for the software.

CB : total budget allocated for the software.

Assumptions

1. Software system is subject to failures during
execution caused by faults remaining in the
software.

2. Failure rate of the software is equally affected
by faults remaining in the software.

3. The expected number of failures per test
occasion is proportional to the current
cantent of the current fault content of the
software system.

4. On a failure, instantaneous repair effort
starts and the following may occur:

a) fault content is reduced by one witty
probability p ;

b) fault content is unchanged with probability 1-
p .

It is assumed that p > 1- p.

5. Software life cycle length is more than the
optimal number of test occasions the release
of the release of the software.

REFERENCES

Akaike H. (1974). A new look at statistical model
identification, IEEE Trans. Automat. Cont.,
vol.Ac-19,pp. 716-723.

Bittant S., Bolzern P., pedrotti E., pozzi M.and
Scatto;ini R.(1998). ―A falxible modeling
approach for software reliability growth, in
software reliability modeling and
identification, Ed.S Bittani, Springer-verlag,
Berlin.

Caspi P.a. and Kouka E.F (1984). Stopping rules
rules foe a debugging process Based on
different software reliability models proc. Int.
Conf on Fault-Tolerant Computing, pp. 114-
119.

Doob J.L.(1953). Stochastic process, john wiley.

Ehrlich W., Prasanna B., Stampfel J. and Wu J.
(1993), ― Determining the Cost of a Stop-
Testing Decision,‘‘ IEEE Software, pp. 33-42.

Forman E.H and Singpurwalla N.D (1979). ―An
empirical stopping rule for debugging and

Somkant Khare*

w
w

w
.i
g

n
it

e
d

.i
n

210

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 1, April-2018, ISSN 2230-7540

testing computer software‖ ,Jour. Amer. Stut.
Asso. 72., pp. 750-757.

Gillies A.C. (1992). ―Software Quality, Theory and
management‖, Chapman Hall computing
Series, London, UK.

Goal A.L. and Okumoto, K. (1979). ―Time dependent
error-detection rate modal for software
reliability and performance measures‖. IEEE
Trans. Reliability R-28(3), pp. 206-211.

Goel A.L. (1985). ―Software Reliability Models:
Assumptions, limitations and applicability‖,
IEEE Trans. On software engineering, SE-11,
pp. 1411-1423.

Hossnin S.A. and Dahiya R.C. (1993). ―Estimating
the Parameters of a Non- Homogeneous
Poisson process Model for Software
Reliability‖, IEEE Trans. Reliability, vol. 42 pp.
604-612.

Corresponding Author

Somkant Khare*

Research Scholar, Department of Mathematics, SVN
University Sagar (MP)

