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Abstract – The crack boundary is due to a prescribed temperature and stress distribution. By using the 
finite element method, the numerical solutions of the components of displacement, temperature and the 
stress components have been obtained. General solution for arbitrary heat flux along the crack face is 
obtained. For some particular cases, for example, the constant heat flux case and remote heat flux case, a 
closed form solution is obtained. The solution technique is effective in derivation and compact in form. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTRODUCTION 

A unified generalized thermoelasticity formulation: 
Application to penny shaped crack analysis 

Lately, impressive exertion has been dedicated to the 
investigation of breaks in solids, because of their 
applications in industry, in general, and in the 
manufacture of electronic segments, specifically, just 
as in geophysics and seismic tremor designing. They 
happen for some, reasons incorporating regular 
imperfections in materials, because of creation 
process, vulnerabilities in the stacking or condition, 
insufficiencies in plan and lacks in development or 
upkeep. Thus all structures contain breaks as 
assembling imperfections or as a result of 
administration stacking which can be either 
mechanical or thermal. On the off chance that the 
heap is oftentimes connected, the break may develop 
in weakness to a last crack. As the size of the split 
builds, the residual quality of structure stops. In the 
last phases of the break development, the rate 
expands all of a sudden prompting a disastrous 
structure disappointment  

Investigation of such disappointment mechanics keeps 
up the auxiliary trustworthiness, because of splits. In 
1983 the National Institute for Science and Technology 
and Battele Memorial Institute evaluated Mgh costs for 
disappointment because of crack [184]. A comparative 
report authorized by the European Union presumed 
that billions of ECU every year could be spared 
utilizing break mechanics technology.  

The problem of penny molded breaks in flexible solids 
has pulled in wide consideration since Sack stretched 
out Griffith's theory of burst to three measurements. It 
is absurd to expect to audit every single pertinent 
production here as Fabrikant has shown that there are 

several papers managing this theme. Luckily 
intrigued perusers may allude to the survey article 
composed by Panasyuk et al. or on the other hand to 
the book composed by Kassir and Sih for 
progressively nitty gritty information.  

In solids, thermal burdens play a significant and 
every now and again even a primary job in numerous 
fields, for example, in structure airplanes, machines, 
gas and stream turbines, and so on.. The aftereffect 
of unaccounted instigated thermal pressure might be 
calamitous as a rule. So a comprehension of 
thermally instigated worries in solids is basic for a 
comprehensive investigation of the assembling 
stages.  

Presence of an opening or break in a strong causes 
aggravation in heat stream and the neighbourhood 
temperature gradient around the brokenness 
increments. Thermal unsettling influences of this sort 
can produce material disappointment through break 
propagation. Florence and Goodier examined stream 
initiated thermal worries in unbounded isotropic 
solids.  

Hosseini-Teherani and Hosseini-Godrazi presented 
a boundary component formulation for the split 
examination using the Lord-Shulman theory of 
thermoelasticity. Sherief and El-Maghraby tackled a 
dynamical problem for a vast thermoelastic strong 
with an inner penny molded split which is exposed to 
prescribed temperature and stress circulations. They 
have used L-S theory of thermoelasticity and 
Laplace and Hankel transform method to take care 
of the problem. Sherief and El-Maghraby tackled a 
dynamical problem for a boundless thermoelastic 
strong with limited linear break inside the medium. 
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This problem has been comprehended utilizing L-S 
theory of thermoelasticity.  

Despite these, moderately less consideration has been 
paid to examine the thermoelastic split problem 
utilizing generalized thermoelasticity theories. In this 
article, we take care of a dynamical problem for a 
penny-formed split in a limitless, homogeneous and 
isotropic generalized thermoelastic medium. This 
problem has been unraveled with regards to CCTE, 
Lord-Shulman and Green-Naghdi models. Laplace and 
Hankel transforms strategies have been utilized to 
take care of the problem. Reversal of twofold transform 
has been done numerically. Numerical reversal of 
Laplace transform has been finished applying the 
method of Bellman et al. The numerical outcomes for 
displacement, stress and temperature are acquired for 
copper material and are demonstrated graphically to 
look at the outcomes for CCTE, GN model II, GN 
model III and LS model. Variety of stress power factor 
against the sweep of the break and against the time 
have been indicated graphically for all the previously 
mentioned models.  

FORMULATION OF THE PROBLEM  

Give us a chance to consider a limitless homogeneous 
isotropic generalized thermoelastic medium containing 
a penny-formed split, which is exposed to prescribed 
temperature and stress disseminations. Give the body 
a chance to be alluded to barrel shaped co-ordinate 
framework (r, 6, z) and the inner split involve the 
district z = 0,0 < r < an as appeared in Fig.l. Since the 
geometry of the locale is symmetric about the split 
plane, the problem is diminished to a blended 
boundary esteem problem of thermoelasticity for the 
district z > 0, r > 0. Every single considered capacity 
will rely upon r,z and t just, i.e., the displacement 
vector u and temperature T can be taken in the form u 
= (u(r,z,t),0,w(r,z,t)) and T = T(r, 2, t). The bound 
together equations for classical coupled 
thermoelasticity (CCTE), Lord-Shulman and Green-
Naghdi theories for isotropic linearly versatile strong 
are 

 

 

where t1 = l, t2 = 0, t3 = 0,x = 0 for CCTE, t1 = l, t2 = 
0, t3 = 0, x = T0 for LS model, 

for GN model III and 

for GN  

 

Fig.l: Co-ordinate system and geometry of the 
solution domain. 

model II, and T is the absolute temperature and e is 
the cubical dilatation given by 

 

p is the density, A and p, are Lame constants, K is 
thermal conductivity, K* is the material constant for 
GN models, 7 = (3A + 2p)at, at being the co-efficient 
of linear thermal expansion, To is the reference 
temperature assumed to be such that | |«C 1, Cv is 
the specific heat at constant strain, r0 is the 
relaxation time , V2 is the Laplacian, given in our 
case by 

 

Constitutive equations in the present case are 

 

 

Dimensionless parameters used here are 
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Where 

 

Then, after omitting primes, equations can be rewritten 
as 

 

 

 

 

Constitutive equations become 

 

 

 

We note that the equation retains its form.  

Combining equations and using equation we obtain 

 

The above equations are solved subject to the initial 
conditions 

 

Boundary conditions for the heat conduction problem 
on z=0 may be taken as 

 

Applying Laplace transform defined by the relation 

 

to the equations (5.1.6)-(5.1.10) we get 

 

 

 

 

 

 

 

Boundary conditions in transformed domain take the 
form 

 

 

Now eliminating e between equation we get 

 

 

which can be written in the following form 

 

where k2 and k2 are the roots of the equation 
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The solution of equation can be written in the form 9 = 
9X + 02, where 6{ is the solution of the equation 

 

The Hankel transform with parameter a of a function 
f(r,z,p) is given by, 

 

where J0 is the Bessel function of the first kind of order 
zero. The inverse Hankel transform is given by 

 

Taking the Hankel transform with parameter a of both 
sides of equation and using the operational relation of 
the Hankel transform 

 

we obtain 

 

The solution of this equation, which is bounded at 
infinity, can be written as 

 

Due to symmetry, we shall consider only the case 
when z > 0; we thus have 

 

Taking the inverse Hankel transform of both sides of 
equation (5.1.23), we obtain 

 

Similarly eliminating 6 between equations, we find that 
e satisfies the same differential equation as 9. The 
solution of this equation compatible with equation 
(5.1.16) is given by 

 

Using the inverse Hankel transform, we obtain 

 

Taking Hankel transform of equation and using 
equations, we obtain 

 

The solution of equation (5.1.27) for z > 0, which is 
bounded at infinity, is given by 

 

where B(a,p) is a parameter and q = y/ot2 + (32p2. 
Taking the inverse Hankel transform of both sides of 
equation (5.1.28), we obtain 

 

Taking Laplace-Hankel double transform of both 
sides of equation and using equations we obtain 

 

The solution of equation  can be obtained as follows 

 

Substituting from equations (5.1.24), (5.1.26), 
(5.1.29) and (5.1.31) into equations 
(5.1.17a),(5.1.17b) and (5.1.17c), and using the 
relation 

 

we obtain the stress components in the form 

 

 

 

Dual integral equation formulation 
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Substituting from equations into the boundary 
conditions, we obtain the relations 

 

Since equation is valid for all values of r, we obtain 
B{a,p) in the following form 

 

Substituting for B(a,p) from equation into equations, 
we obtain 

 

 

Equations are a set of four dual integral equations 
whose solution gives the unknown variables Ai(a,p) 
and A2(a,p). We shall now look for relations between 
Ai(a,p) and A2{a,p) to reduce the problem to find the 
solution of only two dual integral equations in one of 
the variables, say Ai(a,p). We assume for the case r > 
a that 

 

Substituting from equation (5.1.44) into the equation 
(5.1.36) and changing the order of integration, we 
obtain 

 

Using the following integral formula of the Bessel 
functions 

 

relation reduces to 

 

Multiplying both sides of equation (5.1.47) by equation 
with respect to r from r = v to r = oo, equation with 
respect to u, we obtain 

 

Substituting from equation (5.1.48) into equation 
(5.1.44) we can write the relation between Ai(a,p) and 
A2(a,p), for r > o, in the form 

 

Similarly, for the case r < a, we assume that 

 

Substituting from equation (5.1.50) into equation 
(5.1.39) and using the same procedure as before, we 
obtain 

 

and then substituting this into we arrive at the 
relation 

 

Where 

 

Substituting from equations into equations we obtain 
two dual integral equations in the unknown 
parameter Ai{a,p) 

 

 

Where 
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And 

 

Solution of the dual integral equations 

In order to solve the preceding system, we use the 
operator of fractional calculus known as the modified 
Hankel transform operator and defined by the relation 

 

Use will also be made of the two operators known as 
the modified Kober-Erdelyi operators and defined by 
the relations 

 

 

 

 

We now define the function ^(a,p) by the relation 

 

Using equation can be written in the form 

 

Where 

 

We note for future reference that we have chosen the 
constant 7 so that for large a, 

 

Using the operator of the modified Hankel transform, 
equations can be written in the form 

 

We now write the equations (5.1.62) and (5.1.63) in 
the following form 

 

Where 

 

 

 

 

and in our case /2(r,p), gi(r,p) are unknown but fi(r,p), 
52(r>p) are known and given by fi{r,p) = g J{r,P) and 
g2(r,p) = 0. 

In order to reduce the dual integral equations to 
Eredholm integral equation of second kind, we use a 
method due to Cooke. Thus putting Sneddon‘s trial 
solution 

 

we obtain 

 

and 

 

In deriving the above equations use has been made 
of the following relationships established 

 

Solving the functional relation (5.1.66) and (5.1.67) 
we get 

 

And 
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where I-1 and if-1 are the inverse operators for which 
the following relationship hold 

 

Upon utilizing these relationship, equations reduce to 

 

And 

 

where following relation has been used 

 

Now writing the equation (5.1.70) in the interval [a, oo) 
and the equation (5.1.71) in the interval [0, a] we get 
respectively 

 

and 

 

where hi(t,p) and h2(t,p) are the parts of h(t,p) 
corresponding to the intervals [0,a] and [a, oo) 

After some manipulations and using equation (5.1.72), 
equation (5.1.73) can be written as a Fredholm integral 
equation of the second kind in the unknown function 
hi(t,p) of the form  

 

Where 

 

And 

 

and finally ip(a,p) can be obtained using (72), in the 
following form 

 

We note that with our choice of 7, we made the 
improper integral defining K(u,t,p) convergent. Solving 
the integral equation (5.1.74), we can obtain the 
function hi(t,p) . Prom equation (5.1.77) we obtain 
Tj){a,p). Prom equation (5.1.49), (5.1.52) and (5.1.59) 
we obtain unknown parameters Ai(or,p) and A2(a:,p). 
Knowing Ai(a,p), A2(a,p) we can obtain temperature 
distribution, displacement components and stresses in 
Laplace transform domain from equations (5.1.24), 
(5.1.29), (5.1.31) and (5.1.33)-(5.1.35) respectively. 

The methods for solving the integral equation 
numerically [52] and for inverting the Laplace 
transform numerically [21] are discussed in Appendix. 

NUMERICAL RESULTS AND DISCUSSIONS 

For numerical purpose we shall take 

 

 

then we get from 

 

 

Changing the order of integration, the function J(u,p) 
in equation (5.1.76) can be written in the form 

 

and upon using the relation 

 

we can write J(u,p) in its simplest form as 

 

For numerical computation copper material has been 
chosen whose material constants have been taken 
as follows 
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Figs.2-5 are drawn to give a comparison of results for 
temperature, radial and axial displacements and axial 
stress against radial distance r and Figs. 6-7 are 
drawn to give a comparison of stress intensity factor 
against crack radius and time respectively for CCTE, 
GN model II, GN model III and Lord-Shulman model. 
Fig. 2 depicts variation of temperature distribution 6 
against radial distance r for z = 0.2, £ = 0.2623592. It 
is 

 

Fig.2: Variation of temperature 0 for z=0.2 and 
t=0.2623592. 

 

Fig.3: Variation of radial displacement u for z=0.2 
and t=0.2623592. 

clear from the graph that 6 has maximum value at the 
centre of the crack, it begin to fall just near the crack 
edge, where it experiences sharp decreases. It is also 
observed that for GN model II it has larger value than 
CCTE, GN model III and LS model because of the 
presence of the energy dissipative term (see equation 
(5.1.8)). Besides this the four theories begin to 
coincide when the radial distance r is beyond the crack 
radius a and then reduce to the reference temperature 
of the solid. 

Fig.3. & Fig.4. are plotted for radial displacement u 
and axial displacement w versus radial distance r for 
the same set of parameters as mentioned above. Fig.3 
shows that the radial displacement u increases to 
reach its maximum magnitude just after the crack 
circumference and beyond it u falls again to try to 
attain zero for all the theories as r increases. The 
Table 1 shows that there is slight difference in 
magnitude for two models (LS model and GN model 
III) which is not clear in the figure because of the 
scaling used here. 

Table l: Radia J distribution of Temperature and 
Radial displacement for LS model and GN model III 

 

From Fig.4 we see that the axial displacement w has 
its maximum value at centre of the crack and begins 
to fall near the crack edge and becomes zero for the 
four theories. It is observed that the magnitude of w 
is larger in case of GN model II than GN model III, 
which is again larger than LS model and CCTE. The 
displacement components u and w show different 
behaviour, because of the elasticity of the solid that 
tends to resist vertical displacement. Fig.5 
represents axial stress azz for the same set of 
parameters. 

 

Fig. 4: Variation of axial displacement w for z=0.2 
and t=0.2623592. 

 

Fig.5: Variation of axial stress  for z=0.2 and 
t=0.2623592. 
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Here also the magnitude of stress is larger in case of 
GN model II than CCTE, GN model III and LS model. 
From the figure it is observed that beyond the crack 
the axial stress tends to vanish for all theories which is 
physically plausible. The stress intensity factor K has 
been calculated numerically for t=0.2623592 from the 
relation 

 

 

Fig. 6: Variation of stress intensity factor against 
crack radius a for t=0.2623592. 

 

Fig.7: Variation of stress intensity factor against 
time t for a=1.2 

Fig.6 and Fig.7 show the variation of stress intensity 
factor against the crack radius and time respectively 
for all four theories. In Figs.2-6 (for t=0.2623592) the 
result for L-S theory shows the similar behavior with 
those of Sherief and El-Maghraby [224] (for t=0.25) 
where they have considered only LS model. 
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