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Abstract – Studies on volume and pressure derivatives of dielectric constants of ionic crystals are useful 
to make a critical test of the theories of dielectric polarization and interionic forces operative in these 
crystals. Measurements of first, second and third order pressure derivatives of static or low frequency 
dielectric constant ε0 have been performed for a number of ionic crystals. These experiments make use of 
these terminal geometric capacitance (TTGC) techniques. The details of experimental method based on 
TTGC measurements have been given by Lowndes and Martin. The TTGC method is better than the old 
immersion method mainly in two respects. First it is quicker method and secondly it does not use high 
dielectric constant liquids which can prove troublesome.  

In fact the liquid-solid surface interactions change the dielectric constants by several percent. Among 
the various measurements based on TTGC the results obtained by Fontanella et alfor alkali halides may 
be considered to be most accurate. These investigators have assigned an uncertainty of only ± 0.2% for 
first derivatives of ε0. On the other hand the uncertainties reported by other workers [20-26 ]are of the 
order of ± 5%.The results obtained by Fontanella et al have subsequently been corroborated by Bertels 
and Smith[40]. In fact the high accuracy achieved is due in part to the use of higher order terms to 
describe the variation of ε0 with pressure and in part to the improved experimental techniques. Andeen et 
al have measured the pressure derivatives of ε0of alkaline earth fluoride using the same experimental 
method.They report an uncertainty of ± 0.01% for the first order pressure derivatives of ε0 for CaF2,SrF2 
and BaF2.Their results are in very good agreement with other investigations[40-54].The TTGC method 
has also been used to measure the temperature and pressure dependences of the dielectric constants of 
semiconductors. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The pressure derivatives of static dielectric constant 
are determined through the measurements of the 
pressure dependence of capacitance. The pressure 
derivatives can be reduced to volume derivatives using 
the relations given below 

 

 

And  

 

Where BT = -V(dP/dV) is the isothermal bulk modulus. 
All the derivatives are taken at constant temperature. 
The experimental values of volume derivatives of  ε0 

can be from equations (4.1) to (4.3) using measured 
data on the pressure derivatives of ε0. Values of V ( 
dε0/dV),V
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obtained from the experimental data.Values of 
volume derivatives of dielectric constant can also be 
calculated starting from the Claussius –Mossotti 
theory of dielectric constant and using interionic 
potentials. Such studies for alkali halides and other 
ionic crystals have been performed [56-60].A 
comparison of the calculated and experimental 
values of calculated and experimental values of the 
volume derivatives of ε0 provides a rigorous test of 
various polarization and interionic potential models. 
On the basis of Claussius –Mossotti relation,i.e., 
using equations (2.6) and (2.10) we can write 

 

The first and second order volume derivatives of 
dielectric constants are then obtained from equation 
(4.4) as follows, 
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The ion-displacement polarizability is given by  

 

Where Ze is the magnitude of ionic charge and A is 
the force constant related to the short range –range 
potential energy ф( r) and its derivatives by the 
following expression, 

 

Where the superscript I,II etc. represent the first and 
higher order derivatives with respect to r. The volume 
derivatives of αi are obtained from equation (4.7) as 
follows (by assuming Z not to depend on volume) 

 

And, 

 

The volume derivatives of the short range force 
constant A can be obtained from equation (4.8) which 
yields 

 

and 

 

It is clear from equations (4.5) and (4.6) in order that 
the volume derivatives of ε∞ and αi are required in 
order to evaluate the first and higher order derivatives 
of static dielectric constant. The method for evaluating 
the volume derivatives of ε∞ and electronic 
Polarizabilities has been developed for NaCl type 
crystals as well as for CsCl type crystals. It should be 
mentioned that for ionic crystals. In general, the values 
of volume derivatives of ε∞ are much smaller than the 
corresponding values of those of ε0. This is mainly 
because the volume derivatives of ion –displacement 

Polarizabilities are much larger than those of electronic 
Polarizabilities. 

Gibbs and Jarman [1962] have found empirically that 
the total Polarizability α0 varies nearly as the square of 
the volume. This implies that  

 

Sharma et.al. (1977) have considered a more general 
relation of the form 

 

Where K and q are constants for a given crystals. 
Using the experimental data on first and second 
order volume derivatives of constant ε0 they have 
obtained values of  q  between 2 and 3 .The ion-
displacement polarizability αi and the short range 
force constant A also depend on the volume in a 
form similar to that represented by equation (4.14)as 
it is evident from the data on these quantities. In fact 
we note from equation (4.9) that (V/αi)(dαi/dV) and 
(V/A)(dA/dV) are equal and of opposite sign to each 
other. It should be mentioned here that the 
importance of (V/A)(dA/dV) as a useful physical 
quantity for crystals has been established .Sherman 
has used this quantity to study the bond 
anharmonicities and pressure dependence of normal 
modes of vibrations, whereas Shankar and 
coworkers [  ]have made  use of this to obtain some 
inter-relationships and thermodynamic quantities. 
There have been numerous attempts to investigate 
the volume dependence of e*/e .Taking the volume 
derivative of equation (2.23) we get, 

 

Where γTO is the transverse optic mode Gruneisen 
parameter. The exponential values of γTO for most of 
the alkali halides, silver halide and thallous halides 
have been reported by Lowndes and Rastogi 
[1976].It is thus possible to estimate (V/e

*
) (de

*
/dV) 

directly from experimental data using equation 
(4.15).An alternative method to evaluate the volume 
dependence of e

*
is based on different polarization 

models such as the shell model exchange charge 
mode, deformation model and Phillips Lawaetz 
ionicity model (Jain and Shanker[124]).A comparison 
of the value of (V/e

*
)(de

*
/dV) obtained from different 

models is presented in Table 4.3.The common 
feature of the results obtained from different models 
is that (V/e

*
) (de

*
/dV) is positive without any 

expectation.This implies that the decrease in the 
crystal volume due to the effect of pressure 



 

 

 

Poonam* 

w
w

w
.i
g

n
it

e
d

.i
n

 

786 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. XV, Issue No. 1, April-2018, ISSN 2230-7540 

 

increases the overlap and distortion of ions, thereby 
causing the decrease in the Szigeti effective charge 
parameter (e

*
/e).Values (V/e

*
)(de

*
/dV)obtained from 

the exchange charge model and the deformation 
dipole model are closer to each other and also with the 
experimental values Table(4.3).It has been pointed out 
that the features of the exchange charge model and 
the deformation dipole model are similar in certain 
respects and both the model take proper account of 
ionic overlap and distortions. This is the main reason 
for the detailed investigations of the dielectric 
properties of ionic crystals using these two models. It 
should also mentioned that the assumption that e

*
/e 

does not change with volume,i.e (de
*
/dV) =0, yields the 

values of γTO from equation (4.15) which are in 
reasonably good agreement with experimental data. 
On the other hand, some workers have found that 
(de

*
/dV) is negative for all alkali crystals. Studies 

based on recent experimental data and correct 
formulation have revealed that (de

*
/dV) should not be 

negative. It has been shown by Barron and Batana 
that the values of (de

*
/dV) obtained by Jones were to 

be negative because he used a relation between short 
range force constant and compressibility which is valid 
only at atmospheric pressure. Barron and Batana have 
modified this relationship by considering the effect of 
applied pressure. The negative values of (de

*
/d V) 

obtained by Vartosos[180] have been found invalid as 
he has used an incorrect relationship between the 
force constant and transverse optic mode 
frequency.The second order volume derivative of the 
effective charge parameter can also be calculated 
using the data on the volume derivatives of dielectric 
constants. Taking the volume derivative of equation 
(4.15) we get an expression for (d

2
e

*
/dV

2
)  in terms of 

the second order volume derivatives of ε0,ε∞ and ωTO. 
The volume derivatives of ωTOand γTO can be 
evaluated with the help of the first Szigeti relation, 
which on differentiating yields, 

 

And on differentiating once more we obtain the volume 
derivative of the given function And on differentiating 
once more we obtain, 

 

Where the short range force constant A and its volume 
derivative are the same as given by the equations 
(4.8),(4.11) and (4.12).Values of γTO and its volume 
derivatives calculated from equations (4.16) and (4.17) 
have been found to present good agreement with 
experimental data. 

It is possible to find some useful interrelationships 
between higher order elastic constants and pressure 
derivative of dielectric constants. Using the equation of 
state for the relationship between pressure and 
volume derivatives of the potential energy W, we can 
write 

 

The total potential energy W for an ionic crystal can be 
written as, 

 

Where αM is the Madelung constant and ф( r) is the 
short-range repulsive energy. Using equations 
(4.8),(4.18) and (4.19), we get 

 

 

 

Where  x (=(V/r
3
) is a geometrical factor depending 

on the type of crystal structure. For NaCl –structure 
solids x=2.On solving equations (4.20 to 4.22) we 
get  

 

Where 

 

And these are directly related to the second, third, 
and fourth order elastic constants by the following 
expressions, 
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Thus equations (4.5) to (4.10) and equations (4.230 to 
(4.28) provide direct interrelations between the volume 
derivatives of dielectric constants and higher order 
elastic constants and higher order elastic constants. 
Using the data on second, third and fourth order 
elastic constants one can calculate A, (dA / dV) and 
d

2
A/dV

2
 with the help of equations (4.23) to (4.28). The 

volume derivatives of ε0 and γTO are then estimated 
using equations (4.5) to (4.100,(4.16) and (4.17). The 
results thus reported have been found to present good 
agreement with experimental values. There are three 
components for the strain derivatives of each dielectric 
constant. They are represented by W11,11 W11,22 and 
W12,12, defined as follows,( Shrinivasan [178]); 

 

And  

 

Where the subscripts 0 and ∞ correspond to low 
frequency and high frequency dielectric constants 
respectively.p

∞
ij,kl are known as the photo-elastic or 

strain optical constants. In terms of quantities defined 
above the volume derivatives of the dielectric 
constants are  

 

The expressions wij,kl and pij,kl in terms of the shell 
model parameters have been obtained by Shrinivasan. 
Continuous efforts have been made to calculate these 
strain derivative components of dielectric constants.  
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