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Abstract – In this paper we will investigate a numerical discussion about Williem sitter cosmological 
model filled with an electro magnetized with Nambu strings in general relativity. Here we assume that in 
electromagnetic field tensor Eij, E23 is the only non-vanishing component. Under the assumption that 
the expansion θ in the model is proportional to the shear σ which leads to N = M

n  
(where M and N are 

functions of time only). Also we will discuss the cosmological model physical behavior. 

Keywords – Numerical, Fundamental, Einstein Static, Model, Equations etc. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1. INTRODUCTION 

The Dutch astronomer Willem de Sitter (1872-1934) 
gave important contributions to the rise of relativistic 
Cosmology. The debate from 1916 to 1918 between 
de Sitter and Albert Einstein (1879-1955) is a 
fundamental chapter in the history of the scientific view 
of the universe. In fact, during such a debate both 
Einstein and de Sitter formulated their own 
mathematical expressions for the metric of the 
universe as a whole. 

Einstein static model of the universe 

In the fall of 1916 Einstein debated with de Sitter on 
the problem of suit- able boundary conditions at 
infinity. According to the Principle of Relativity, Einstein 
tried to obtain values for the gµν‘s at infinity that was 
invariant for all transformations. He avoided this 
difficulty by replacing such boundary conditions with 
the condition of closure, introducing a ―finite and yet 
unbounded universe‖.[4] Einstein proposed a spherical 
model of the universe, in which the matter was 
uniformly and homogenously distributed. 

This static solution had line element: 

 

 

R was the radius of curvature of the three-space (x1, 
x2, x3), that was every- where orthogonal to the time 
dimension x4. 

This model fully achieved the relativity of inertia. There 
was not any independent property of space which 

claimed to the origin of inertia, so the latter was 
entirely produced by masses in the universe.  The 
condition of spatial closure ensured that both the 
gravitational potential and the hypothetical average 
density of ponderable matter remained constant in 
space. 

 

Figure 1: Einstein‟s “cylindrical” universe. One 
spatial dimension is disregarded. The vertical 

axis is along the direction of time [from 
Robertson 1933, p. 70]. 
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Einstein modified his field equations accounting for the 
supposed static nature of the universe, i.e. to preserve 
the gravitational potential and the density of matter 
constant in time.  He inserted the so-called 
cosmological term, namely the fundamental tensor gµν 
multiplied by −λ, a universal but unknown constant: 

 

In this way field equations expressed the observational 
evidence of the static equilibrium of the universe. 

The new constant λ, the radius of the universe R, and 
the mean density of ―world matter‖ ρ were strictly 
connected: 

 

In Einstein model the metric of the universe could be 
given as a solution of relativistic field equations with 
the cosmological term.  Both the general covariance 
and the laws of conservation of momentum and 
energy were still satisfied. 

3. DE SITTER “EMPTY” MODEL OF THE 
UNIVERSE 

Right after Einstein model appeared, de Sitter 
proposed his own solution of field equations.  The 
Dutch astronomer admired Einstein conception of the 
universe ―as a contradiction-free chain of 
reasoning‖,[7] and gave a different solution also 
maintaining the λ-term. However de Sitter preferred 
the original relativistic theory of gravitation, ―without 
the undeterminable λ, which is just philosophically and 
not physically desirable‖.[8] 

3.1  The “mathematical postulate of relativity of 
inertia” 

De Sitter approached the cosmological problem in a 
different way.  It was mainly Paul Ehrenfest (1830-
1933) who suggested him a mathematical conception 
of inertia[9], which led de Sitter to propose a finite and 
―empty‖ universe. 

De Sitter proposed a distinction between the ―world 
matter‖ and the ―ordinary matter‖. The former was 
hypothetically distributed through space with density 
ρ0. The latter corresponded to observable objects as 
planets and stars, i.e. to locally condensed world 
matter with density ρ1. By this assumption, de Sitter 
pointed out that ―inertia is produced by the whole of 
world matter, and gravitation by its local deviations 
from homogeneity‖.[13] Neglecting all pressures and 
internal forces, and supposing all matter to be at rest, 
the energy-momentum tensor became: 

 

De Sitter made the hypothesis to neglect gravitation on 
large-scale, and to take ρ0 constant. 

According to de Sitter, the three-dimensional finite 
world proposed by the Feinstein seed the ―material 
relativity requirement‖,[14] or equivalently the ―material 
postulate of relativity of inertia‖.[15] 

The Dutch astronomer pointed out that the relativistic 
field equations were ―the fundamental ones‖[17]: the 
postulate that at infinity all gµν‘s were invariant for all 
transformations was more important than the 
―Machian‖ postulate of inertia introduced by Einstein.  
In fact in Einstein model, for the hypothetical value R = 
∞, the whole of gµν‘s degenerated to 

 

This set of values was invariant for all 
transformations for which, at infinity, t0 = t. In other 
words, in Einstein cylindrical world it was possible to 
find systems of reference in which the gµν‘s only 
depended on the space-variables, and not on the 
―time‖. However the ―time‖ of such a systems had ―a 
separate position‖,[18] because it was ―the same 
always and everywhere‖.[19]  For such a reason, 
according to de Sitter, the time coordinate in 
Einstein model was nothing else than an absolute 
time, and there the world matter took ―the place of 
the absolute space in Newton‘s theory, or of the 
inertial system‖.[20] De Sitter proposed that the 
potentials should have degenerate at infinity to the 
values: 

 

According to him, ―if at infinity all gµν‘s were zero, 
then we could truly say that the whole of inertia, as 
well as gravitation, is thus produced.  This is the 
reasoning which has led to the postulate that at 
infinity all gµν‘s shall be zero‖.[21] De Sitter called 
this requirement the ―mathematical relativity 
condition‖,[22] or the ―mathematical postulate of 
relativity of inertia‖.[23] In fact, such a condition 
corresponded to the possibility that ―the world as a 
whole can perform random motions without us 
(within the world) being able to observe it‖[24]: ―the 
postulate of the invariance of the gµν ‘s at infinity - 
de Sitter stated - has no real physical meaning. It is 
purely mathematical‖[25] 



 

 

Sanjeev Kumar* 

w
w

w
.i
g

n
it

e
d

.i
n

 

1301 

 

 Journal of Advances and Scholarly Researches in Allied Education 
Vol. XV, Issue No. 1, April-2018, ISSN 2230-7540 

 
3.2   A universe without “world matter” 

In a letter to Einstein[26] de Sitter proposed his own 
solution of the metric of the universe as a whole, 
actually the second relativistic model in modern 
Cosmology. 

The Dutch astronomer considered field equations with 
the λ-term and without matter, i.e. by assuming ρ0 = 0: 

 

These equations could be satisfied by the gµν‘s given 
by the metric: 

 

The coordinates (x, y, z, t) could have infinite values, 
on condition that gµν ‘s were null at infinity. Such a 
condition was equivalent to the finiteness of the world 
in natural (proper) measure.  In fact the length of any 
semi-axis in natural measure was: 

 

A finite world (i.e.  a finite value of Lα) necessary 
implied gαα  = 0 for xα → ∞, and vice versa.[27] 

De Sitter pointed out that in his model no world matter 
was necessary, and the insertion of the λ-term 
satisfied the mathematical postulate of relativity of 
inertia.  In this system there was not any universal 
time, nor any difference between the ―time‖ and the 
other coordinates: none of these coordinates had any 
physical meaning.[28] The cosmological constant 
determined the value of the curvature radius R: 

 

by using an imaginary ―time‖-coordinate ξ4 = ict, the 
geometry of de Sitter world was that of a 4-
dimensional hyper-sphere which could be described in 
a 5-dimensional Euclidean space: 

 

In hyper-spherical coordinates the metric of such a 
four-dimensional world resulted: 

 

where 0 ≤ θ ≤ 2π; 0 ≤ ψ, ζ , ω ≤ π. Equivalently, by 
replacing the imaginary ―time‖-coordinate ξ4 with a real 
time-coordinate (ξ4 → iξ4), the geometry of de Sitter 
world corresponded to a 4-dimensional hyperboloid in 
a 4+1- dimensional Minkowski space-time: 

 

By pseudo-spherical coordinates (with iω
O
 = ω), the 

metric of space-time resulted: 

 

where 0 ≤ θ ≤ 2π; 0 ≤ ψ, ζ ≤ π; −∞ < ω0 < +∞. 

The potentials in the hyper-spherical coordinate 
system were: 

 

Thus the metric proposed by de Sitter, 

 

―If a single test particle - de Sitter wrote to Einstein - 
existed in the world, that is, there were no sun and 
stars, etc., it would have inertia‖.[30] Essentially, in 
the universe proposed by de Sitter a suitable metric 
was obtained without any ―physical‖ masses.[31] 
Such forms of matter as stars and nebula were to 
be regarded as ―test particles‖ in a fixed background 
metric, which curvature was determined by the 
cosmological constant.[32] 

3.2.1 Einstein criticism 

Einstein acknowledged de Sitter‘s solution to be 
―very interesting‖,[35] but ―must have been 
disappointed‖,[34] and tried to discard this anti-
Machian solution: ―I cannot grant - Einstein wrote to 
de Sitter - your solution any physical possibility‖.[35]  
In fact, the cosmological term took a fundamental 
role in de Sitter model in order to involve a sort of 
spatial (and not material) origin of inertia. ―The gµν 
field – Einstein replied to de Sitter - should be fully 
determined by matter, and not be able to exist 
without the latter ‖.[36] 

At first Einstein objected that the hyperboloid 
surface 

 

was a singularity. On this surface there was a 
discontinuity, because the g44 term ―jumped‖ [37] 
from +∞ to −∞, and gαα ‘s from −∞ to +∞. Such a 
surface lied in the physically finite, but it was not 
possible to assume infinite values for the potentials, 
because of the supposed static nature of the 
universe and the small velocities measured on 
stars.[38] Moreover, the four-dimensional 
continuum proposed by de Sitter did not have the 
property that all its points were equivalent.[39] In 
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fact it had a preferred point, i.e. the center of the conic 
section 

 

De Sitter replied that the hyper-surface involved a 
finite natural spatial dis- tance and an infinite natural 
temporal distance. Thus the discontinuity was only 
apparent, and this problem was ―not interesting‖.[40] 
Also the supposed preferred point was later shown to 
be a geometrical consequence of that choice of 
coordinates, and not a true physical aspect.[41] ―My 
four-dimensional world - de Sitter remarked to Einstein 
- also has the λ-term, but no world matter‖.[42] 

3.2.2 Elliptical geometry 

In order better to compare his own model with Einstein 
solution, de Sitter proposed another expression of the 
metric.[43] By using spherical polar coordinates, he 
represented the hyperboloid universe (system B) as 
the Einstein universe (system A), i.e. as 3-dimensional 
hyper-spheres embedded in a 4-dimensional 
Euclidean space: 

 

 

De Sitter acknowledged Einstein remark to be correct, 
but gave a different interpretation. According to the 
Dutch astronomer, such a remark involved a 
philosophical, and not a physical requirement.[52] In 
fact, the ―equator‖ at r = π R was at a finite distance in 
space, but was physically inaccessible.[53] The 
velocity of a material particle became zero for r = π R. 
Thus a material particle which was on the polar line on 
the origin could have no velocity, nor energy.  ―All 
these results - de Sitter stated - sound very strange 
and paradoxical. They are, of course, all due to the 
fact that g44 becomes zero for r = π R. We can say 
that on the polar line the four-dimensional time-space 
is reduced to the three-dimensional space: there is no 
time, and consequently no motion‖.[54] The time 
needed by a ray of light, or by a material particle, to 
travel by any point to the equator was infinite. Thus the 
singularity at r = π R could never affect any physical 
experiment.[55] 

4. CONCLUSION 

―At the present time - de Sitter wrote in 1920 - the 
choice between the systems A and B is purely a 
matter of taste. There is no physical criterion as yet 
available to decide between them‖.[59]  However de 
Sitter noticed that these systems differed in their 
physical consequences. In fact, in de Sitter world a 
particle at rest would not have remained at rest unless 
it was at the origin. This mass test would have 
escaped far away because of the presence of the 
cosmological constant. Thus the de Sitter system to all 
appearances was static, and required a positive radial 
velocity for distant objects. This effect of recession was 

known as ―de Sitter effect‖. At that time, and during the 
Twenties, this effect appeared to be connected in 
some manner with the first red-shift observations of 
many nebula.  The interest in de Sitter effect survived 
until 1930, when truly non-static theoretical models of 
the universe were proposed to explain the red-shift 
problem and the astronomical evidences of a cosmic 
recession .[60] 
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