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Abstract – In this essay we are studying the nature of a linear secondary differential equation system with 
different requirements for the Euler matrix. This is the intention study is to apply the Euler matrix method 
to linear second order partial differential equations under the most general conditions. Error analysis of 
the method is presented. By using the residual correction procedure, the absolute error may be 
estimated. The effectiveness of the method is illustrated in numerical examples. Numerical results are 
overlapped with the theoretical results. Some important results are also discussed. 
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1. INTRODUCTION: 

There are some well-known numerical methods such 
as finite difference methods, finite element methods, 
polynomial approximate methods, spectral methods, 
Galerkin, and collocation methods to numerically solve 
PDEs [1-2]. However, recently various approximate 
methods are discussed in the literature which as the 
Transform differential process, Legendre-wavelet 
method. Chebyshev-tau method and Form of Adomian 
breaking down. In this article, we have developed a 
matrix method dependent on method Euler 
polynomials. The method was given by error 
estimation and error analysis. 

Let Ω be a rectangular region {(x,y) :0 x,y b }     

and   is the boundary of Ω. In general form, for all 

, linear Partial equations differential with 
variable coefficients follow as, 

 

 

In this article, we take into account (1.1): conditions in 
three complicated form [12]. 

Case 1: Conditions defined at the points x = αk and y = 

βk, where  

 

Case 2 : Conditions defined at the points y = yk, 

where  

 

Case 3 : Conditions defined at the points 

 

 

Here  

 

are functions defined in Ω. 

2. DEFINITIONS AND LEMMAS 

Euler Polynomials 

Euler numbers and polynomials are very useful in 
classical analysis and numerical mathematics. In 
many respects, they are closely linked to theory of 
Bemoulli polynomials and numbers. Euler 
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polynomials and number are summarized as follows 
[14-17]. The classical Euler polynomials En(x) is 
usually defined 

 

Definition 2.1, Here M The linear is the space of n real 

matrices, by  the identity matrix and S the 
subspace of all symmetric matrices in M.A. linear 

functional L on M It is said that it is ―positive‖ if  

for any . 

Definition 2.2: A couple real-valued functions (f, g) 

defined on  is being named a averaging pair if. 

(i) f is nonnegative and locally integrable on  

satisfying ; 

(ii) g>0 is absolutely continuous on every 

compact subinterval of ; and 

(iii) for  

 

Definition 2.3 : Let L be a positive linear functional 
and B = B(t) a real valued matrix function which is 

invertible for each . A quartet of real-valued 

functions (f, g, L, B) defined on  is a generalized 
averaging quartet if the conditions (i) and (ii) in 
Definition 2.2 and the following condition (iii) hold (iii) 

for . 

 

Lemma 2.4: 

(I) let conditions in Definition 2.3 hold: then  

 

(II) Let , then 

 

Implies 

 

Lemma 2.5: [36] Let L be a positive linear functional 

on M. Then, for any , We got 

 

Lemma 2.6: Let L be a positive linear functional on M. 

For any , So for everyone 

 

 

Lemma 2.7: Let X(t) be a nontrivial prepared solution 

of (1.1) and det . So for everyone 

 then matrix function. 

 

Satisfies the equation 

 

 

3. MAIN RESULTS 

There are some well-known Numerical approaches 
such as methods of final differences finite element 
methods, polynomial approximate methods, spectral 
methods, Galerkin, and collocation methods to 
numerically solve PDEs (1.1) 

Theorem 3.1: Assume that all conditions stated in 
Section 1 are satisfied; suppose for any solution X (t) 

for (1.1)  for t > t0, and 
P(t) and R(t) are commutative with 

 Suppose further that a 

function occurs a  and a generalized 
averaging quartet. 

 

Where L is positive linear functional on M, satisfying 

 

And the matrix J defined by 
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and  is the linear operator defined by 

 

Then every prepared Oscillatory solution of (1.1) no 

 

Proof: Suppose the Theorem 3.1 is not true and X (t) 

is any nontrivial prepared result of (1.1) in  which 
is nonoscillatory. Suppose without lack of generality 

that . Then by Lemma 2.7. W(t) is 
symmetric and satisfies the Riccati equation (2.2). That 
is, 

 

Integrating both sides of (3.4) for t1 to 1, we obtain 

W(t) 

 

Now use of previous lemma and integrate Then we 
know what contradicts the fact (f, ar, L, 

  Is a generalized 
averaging quartet 

Corollary 3.2 : in case the above conditions hold and 

 

And 

 

where A, B S are constant positive definite matrices, 
and A is commutative with P(t) and R(t). Suppose 
further that there exist an averaging pair (f, ar), where 

 and L is a linear functional positive on 
M satisfying (3.1), where 

 

 

and  is the linear operator defined by (3.3). 
Then any prepared solution of oscillatory (1.1) on 

 

Remark 3.2. Theorem 3.1 and Corollary 3.2 are 
improvement and generalize of Theorem 3.1 and 
Corollary 3.1 by Yang [56]. In fact, Theorem 3.1 in [56] 
is not applicable if we choose such that 

 

Or 

 

Remark 3.4 : Theorem 3.1 is improvement and 
generalize of Theorem 3.1 by Xu and Zhu [53]. In 
fact, Theorem 3.1 in [53] is not applicable if we 
choose such that 

 

Remark 3.5 : Theorem 3.1 and Corollary 3.2 are 
improved and generalize to Theorem 3.1 and 
Corollary 3.1 by Yang and Tang[59]. In fact, 
Theorem 3.1 in [57] is not applicable if we choose 

such that P(t)≠R(t). But when P(t) = R(t),  

and  in Theorem 3.1 and Corollary 3.2 
give Theorem 3.1 and Corollary 3.2 in [57], 

respectively. Also, when  and P(t) > 0 in 
Theorem 3.1 [57], the outcome of these positive 
definite matrices is not necessarily positive definite. 
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