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Abstract – Existence and uniqueness of a fixed point is proved by Banach(1922), which is known as 
Banach contraction principle [1]. It is a very useful, simple, and classical tool in fixed point theory. Many 
authors have studied and extended this theorem in different ways. In this paper we also prove a new result 
concerning fixed point on two complete metric spaces. In this paper, we prove a common fixed point 
theorems for two pairs of maps in two complete metric spaces. These theorems are versions of many 
known results in metric spaces. 
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1. INTRODUCTION AND PRELIMINARIES 

Banach (1922) proved a theorem which ensures the 
existence and uniqueness of a fixed point under 
appropriate conditions. His result is called Banach‘s 
fixed point theorem or the Banach contraction 
principle. This theorem is also applied to show the 
existence and uniqueness of the solutions of 
differential and integral equations and many other 
applied mathematics. Many authors have extended, 
generalized and improved Banach‘s fixed point 
theorem in different ways. Some fixed point theorems 
for two metric spaces have been proved by Brain 
Fisher [1], V. Popa [3], P.P. Murthy et al [4], R.K. 
Namdeo [5] and Luljeta Kikina et al [7]. Now our aim is 
to generalize and extend result of [3]. 

Definition 1.1 Let (X, d) be metric space. A sequence 

 is said to be convergent to a point 

 a positive integer  such that 

 

Definition 1.2 Let (X, d) be a metric space. A 

sequence  is said to be Cauchy sequence if 

 

Definition 1.3 A metric space (X, d) is said to be 
complete if and only if Cauchy sequence in X 
converge to a point of X. 

The following theorem was proved by V. Popa [3]. 

Theorem 1.1 Let (X, d) and (y, p) be complete metric 
spaces. If T: X → Y and S:Y→X satisfying the 
inequalities. 

 

 and , where , then  has 

a unique fixed point point  and  has a 

unique fixed point . Further,  and 
. 

2. MAIN RESULT 

Theorem 2.1 Let (X, d1) and (Y, d2) be complete 
metric spaces. Let A, B: X → Y and C, D:Y→X 
satisfying the inequalities. 

 

 

 and  where . If one of 
mappings A, B, C, and D is continuous then CA and 

DB have a unique common fixed point  and 
BC and AD have a unique common fixed point . 

Further  and  

Proof. Let x be an arbirary point in X. Let 
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and in general let, 

 

 

Using inequality (2.1), we get, 

 

 

 

Now 

 

 

 

If  and by using inequality (2.2), we 
have, 

 

 

If , it follows that 

 

and since ,  is a Cauchy sequence with 

limit  and  is a Cauchy sequence with limit 

. 

Now suppose that A is a continuous. Then, 

 

and so  

Now using inequality (4), we get, 

 

 

 

Letting , we have, 

 

So,  

Using inequality (2.1), we get, 

 

Letting  we get, 
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Again using inequality (2.1), we get, 

 

The same result of course add if one of mapping 

 is continuous instead of . 

Uniqueness 

Suppose that  has a second fixed point . Then by 
inequality (2.1) and (2.2), we have, 

 

 

 

By using inequality (2.2), we get, 

 

 

 

Since  the uniqueness of z 
follows.Similarly z is the unique fixed point of CA and 
w is the unique fixed point of BC and AD. This 
complete the proof of the theorem. 

Corollary 2.1 Let (X, d1) be complete metric space. 

Let A, B, C, D: X→X satisfying the inequality, 

 

 where  if one of mappings A, B, C 
and D is continuous then CA and DB have a unique 
common fixed point z and BC and AD have a unique 
common fixed point w. Further, 

 

Corollary 2.2 Let (X,d1) and (Y, d2) be complete metric 
spaces. Let  A, B: X→Y and C, D:Y→X satisfying the 
inequalities, 

 

 and  where  

and  then CA and DB 
have a unique common fixed point  and BC 

and AD have a unique common fixed point . 
Further, 

 

Corollary 2.3 Let (X, d1) be complete metric space. 

Let  satisfying the inequality, 

 

 where  and 

 and  then CA and DB 
have a unique common fixed point z and BC and 
AD have a unique common fixed point w. Further, 
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