

Dr. Kamlendu Kumar Pandey1* Dr. Devendra Pandey2

w
w

w
.i
g

n
it

e
d

.i
n

473

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 3, May-2018, ISSN 2230-7540

A Study of Handling Cross-Cutting Concerns in
Software Applications

Dr. Kamlendu Kumar Pandey1* Dr. Devendra Pandey2

1,2
 Assistant Professor Department of Information and Communication Technology, Veer Narmad South Gujarat

University, Surat, India

Abstract – Cross-Cutting Concerns are the part of design pattern and application architecture in software
development process where several system and allied concerns are handles in an independent manner
saving time of application development. Programming languages tend to focus more on Business Logic
implementation and no other aspects like input validation, access control, transaction management,
input/output validation, error handling, and in some cases session management. Here in this paper we
consider how cross-cutting concerns is implemented in different from object oriented programming
languages and platforms.

Keywords: Cross-Cutting Concerns, Point-Cuts, Aspects, Concerns

- X -

1. INTRODUCTION

The software application development has to be done
in context with the current trends, practices and
challenges. The productivity is very important as no of
man hours decide the cost incurred in the project. All
the current practices are trying to reduce the
development time. It has been observed that most of
the developer‘s time is consumed in writing system
level concerns rather than the core business logic.
Cross-Cutting Concern [1] are the design pattern to be
followed in the modern application design. A pizza
order application which needs inventory checking and
payment has to deal with lot of cross cutting concerns
which can affect the running of various modules. The
concerns require handling at many places and
developers have to infuse a repetitive coding in all the
modules. If a concern changes than also the changes
have to be done in various modules. The concerns in
pizza application are, user verification, transaction
processing, status updation, concurrency handling,
customize resources in real time, data validation, inter
thread communication handling and creating user log
with timestamps of all the operations . It can be used to
extract an audit trail for the application if asked by the
company or user. This can make an application
trustworthy. It is shown in Fig 1 as how cross cutting
concerns are handled.

Cross-Cutting Concerns (CCC) as a design pattern
focus on modularizing the application in such a way
that various implementations used in CCC can be
materialized and the programmers have a clean way to
put their system level and application level concerns.
The CCC is neatly implemented in Java with terms
called aspect and that is why they name it as Aspect

Oriented Programming [2]. .Net do not have a
defined API for handling CCC but it can be made to
do so. This paper covers both case of Java and .NET.
Java Spring API has incorporated Aspect as
mandatory implementation.

Cross Cutting Concern

Fig.1 Cross cutting concerns in application
(courtesy : https://www.codejava.net)

Some terms used in Aspect Oriented
Programming

a) Aspect: This a module in the project that cuts
across various implementations in a software
implementation. Events like logging can be
one of the aspects.

Dr. Kamlendu Kumar Pandey1* Dr. Devendra Pandey2

w
w

w
.i
g

n
it

e
d

.i
n

474

 A Study of Handling Cross-Cutting Concerns in Software Applications

b) Join point: This is a point in the code to which
the concerns are bound and execution on this
point will trigger the aspects

c) Advice: The are places on join points as an
additional and conversational annotation which
tells in what condition the aspect should be
executed (execution before or after)

d) Pointcut: This is a kind of declaration in an
execution cycle as how many point cuts are to
be considered

2. IMPLEMENTATIONS OF CROSS-
CUTTING CONCERNS

As this is part of design patterns we will see how
aspects are considers in various programming
languages for reference we have selected Java and
.Net frameworks.

2.1 Java Implementation of Cross-cutting
Concerns using AspectJ

AspectJ [3] is the implentation of CCC in Java
language. It comes out with various terms like aspects,
advices, join points, point cuts and using them in a
specific way is called weaving. The rules and the
syntax to be followed in the is shown in the example
given below . We have covere java in two ways. A
command line application and a web application to
show its real power of handling cross cutting concerns.

AspectJ - SampleHello Example to show CCC

First we will see how a Java class of simply printing a
message with a suitable additional greeting behaves in
a Non Aspect way.

// A class SampleHello in file SampleHello.java

public class SampleHello {

private void speak(String somemessage) {

sop(somemessage);

}

private void speakToPerson(String greet_message,
String somenane) {

Sop(somenane + ", " +greet_message);

}

private sop(String str) { System.out.println(str);}}

We can perform the task in AspectJ way also in the
following way

// This is a aspect driven class - GreetingManners.java

public aspect GreetingManners {

pointcut call speakGreetingMessage() :

try{

call(public void SampleHello.speak*(..));

before() :

callApectMessage() {

sop("Hi!");

}

after() : callAspectMessage() {

sop("Happy to see you again!");} catch(Exception e) {}

}

private sop(String str) { System.out.println(str);}}

2.2 Cross cutting concerns with Spring
Framework

Java Spring framework has got excellent and easy-to-
use AOP capabilities[7]. Spring follows the concept of
Inversion of Control which is bound to the web server
/ container. So all the Aspect based configurations
are directly executed by container execution
environment. Aspect comes bundled in with the
Spring frme work which is based on MVC design
pattern. The beans and the methods are using
aspects to do address many system level and
application level concerns. Then the Spring Aspect
class is written as

public class MySpringAspect

{

public Object monitor(ProceedingJoinPoint myaspect)

try{ {

sop("Recording the call in log [" +
myaspect.toString()+

"] using values :"+ myaspect.getArgs()[0]);

Object placeholder = myaspect.proceed();

sop("Spring Recording Aspect : Spring End call [" +

myaspect.toString() + "returning :" +placeholder);

} catch (Exception e)

return placeholder;

Dr. Kamlendu Kumar Pandey1* Dr. Devendra Pandey2

w
w

w
.i
g

n
it

e
d

.i
n

475

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 3, May-2018, ISSN 2230-7540

}

private sop(String str) { System.out.println(str);} }

This aspect has to be registered with spring beans as
follow

<bean id=Recording" class = "MySpringAspect"/>

<! AOP code --><aop:config>

<aop:aspect ref="MySpringAspect">

<aop:pointcut id="ptRecording"

expression="execution(* SampleHello*.*(..))"/>

<aop:around pointcut-ref="ptrecording"
method="monitor"/>

</aop:aspect>

</aop:config>

2.3 Implementation of Cross-cutting concerns
using .NET frameworks

Though .NET framework does not use AOP explicitly
but there are many was by which cross-cutting
concerns can be dealt with. To do this .NET heavily
relies on reflection and introspection aspects :-

• CRUD. operations

• Track Sales of customer.

• Print information of sales.

• Get information of emails and sales.

Let us see the coding in .NET to handle this

Let us assume that we have a Customer class and
some operations mentioned above are to be performed
on Customer class. Below are the .Net Implemntation
of the same

public void addCustomer()

{ Email custEmail = new mail();

custEmail.Send();

Print custPrint = new Print();

custPrint.Print(); }

Above is the example of tangled code . The customer is
to be added first in the database using standard CRUD
operations then same data is to be Emailed using a
using Email class and then the entire data is to be

printed on the web interface. This kind of coding is quite
taxing and becomes repetitive in all such entities while
doing CRUD operations.

We have two ways to deal with the situation.

a) Weaving : Way to deal with cross cutting
concerns

We can categorize the concerns as core concerns and
Cross cutting concerns. With the API available address
this concern with appropriate methods, logic and use
Point cuts and aspects to deal with it. Once the core
and cross cutting concerns are written they must be
packaged in one with appropriate annotation so that
they behave a same block. This is called weaving.
Java uses this way to handle cross cutting concerns.
Advices Re one of the major part and they should be
placed on events as to execute after or before the
method calls. .

b) The Attribute Programming

.Net as such do not have a separate API for handling
cross cutting concerns but with the help of Attribute
based programming it can separate the concerns.
There are no aspect, point cust and advises as in
mature Aspect API but with the help of generic .Net
API and Attributes it is possible to handle the
concern. There is of course no comparison directly
with Java as .Net has its own comprehensive way to
implement different software architectures. Here we
will see how attributes can be used to handle cross
cutting concerns

Cross cut Email code :

The namespace : namespace CustomerSalesProject

{

// A brief look into this

using Attribute : [AttributeUsage(AttributeTargets.All)]

A class : public sealed class Email :
System.Attribute

{

private string emailStr;

public Email(string xemailStr)

{

emailStr = xEmailStr; dispatch(); }

public void dispatch()

Dr. Kamlendu Kumar Pandey1* Dr. Devendra Pandey2

w
w

w
.i
g

n
it

e
d

.i
n

476

 A Study of Handling Cross-Cutting Concerns in Software Applications

{

Console.WriteLine("The Email is dispached to
Administrator‖);} } }

Handling the Aspects and Cross Cutting concerns
of printing

/*Defining name space */namespace
CustomerSalesClassProject

{

[AttributeUsage(AttributeTargets.All)]

class ourPrint : System.Attribute

{

string strPrinterName; public Print(string
pstrPrinterName)

{

strPrinterName = pstrPrinterName; OurPrint();

}

public bool sayPrint()

{

output("Printed to printer"); return true; } }

public output(str) { Console.WriteLine(str))}

All the concerns mentioned over will be called by
the customer now.

/*Customer Class*/ /public class RCustomer :
ContextBoundObject

{

public RCustomer() { }

[Email("someperson@ernet,in")]

[Print("Our Printed")]

public void AddRecord()

{

Console.WriteLine("Record is added to Customer"); } }
}

3. DISCUSSION

The cross cutting concerns find their ways in all the
programming languages. Some languages have inbuilt
mechanism to deal with it while in someone needs to

write some system level code to handle the same. We
saw that AOP is the integral part in Java. It is
implemented in stand-alone as well as Spring based
web application frameworks. We can that in case of
.Net no advice is being used. We can see in the above
code that both the cross cutting concerns are actually
fired before the data of customer is added int o the
table. The constructors are invoked in every call that
means the all logic will be invoked throgh constructor.
This is not a good way of writing code. In .NET the
main class will always need a change of code
whenever a concern regaring this is to be invoked. Like
we have to add Atttibute annotation on all the method in
which concerns are raised. In practice AOP
implementation has to be clean and the main class
need not be disturbed in any case. We must have
separate concern handling classes to be invoked on a
particular event. The aspects are of great use when we
want to maintain audit trail of our applications and each
and every event need to be logged into with proper time
stamp and user details. It has been observed that it a
often ignored task left to be done later which we feel
that this is the integral part of design and must be
interwooven neatly in the application.

4. CONCLUSION

We have tried to investigate as how the cross cutting
concerns are handled by various application
development frameworks. We have explored Core
Java, Spring framework and .Net framework to study
this. Java is having an build mechanism to handle
cross cutting concerns. In Spring the concerns are
based on container‘s property of Inversion Of Control
where aspects are the integral part to handle system
level and transaction level concerns without disturbing
the core business logic. In .Net The cross cutting
behavior is achieved by Attribute programming and
weaving activity. All languages like Ruby, Python and
Angular too have ways to deal with cross cutting
concerns. The purpose is to make the reader know
that we can do away with all clutter in our business
logic using aspects in our applications

REFERENCES:

1. G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda Aspect-oriented programming, 1997 –
Springer

2. Shigeru Chiba, Michihiro Horie, Kei
Kanazawa, Fuminobu Takeyama, and Yuuki
Teramoto. 2012. Do We Really Need to
Extend Syntax for Advanced Modularity?. In
Proceedings of the 11th Annual International
Conference on Aspect-oriented Software
Development (AOSD '12). 95—106

3. David Robinson, ―An introduction to Aspect
Oriented Programming in Java‖

4. Robert E. Filman and Daniel P. Friedman
(2000). Aspect-Oriented Programming is

Dr. Kamlendu Kumar Pandey1* Dr. Devendra Pandey2

w
w

w
.i
g

n
it

e
d

.i
n

477

 Journal of Advances and Scholarly Researches in Allied Education
Vol. XV, Issue No. 3, May-2018, ISSN 2230-7540

Quantification and Obliviousness. Technical
Report

5. P. Alves, E. Figueiredo, F. Ferrari (2014).
Avoiding code pitfalls in aspect-oriented
programming Proc. of the Brazilian
Symposium on Programming Languages,
SBLP, Brazil (2014), pp. 31-46

6. http://www.onjava.com/pub/a/onjava/
2004/01/14/aop.html

7. http://docs.spring.io

8. G. Kiczales, E. Hilsdale, J. Hugunin, M.
Kersten, J. Palm, W. Griswold (2001). An
overview of AspectJ Proc. of the 15th
European Conf. on Object-Oriented
Programming, ECOOP, pp. 327-353

Corresponding Author

Dr. Kamlendu Kumar Pandey*

Assistant Professor Department of Information and
Communication Technology, Veer Narmad South
Gujarat University, Surat, India

kspandey@vnsgu.ac.in

mailto:1kspandey@vnsgu.ac.in

